FRG: Collaborative Research: Emerging issues in the sciences involving non standard diffusion
FRG:协作研究:涉及非标准扩散的科学中的新问题
基本信息
- 批准号:1065926
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The mathematical description and understanding of "diffusive processes" is central to many areas of science, from geometry and probability to continuum mechanics, fluid dynamics, population dynamics and game theory to name a few. Ricci flows, the Navier Stokes equation, non linear elasticity, futures options, all carry an element of diffusion, viscosity, uncertainty that correspond to a similar mathematical description. An extensive theory already permeates, under different circumstances and goals, wide areas of analysis, geometry and applied mathematics. The investigators perceive, however, that there are new, emerging areas of added complexity. It is expected that through the collaborative effort, new general methods will emerge providing some sort of unification and cohesion like the one existing today for classical infinitesimal diffusion processes and their role in the sciences (modeling, simulation, prediction).Problems which are to be studied include reaction diffusion phenomena in random environments, phase transition problems, non local diffusion processes and other applications motivated by questions of population dynamics, congestion issues in transportation, diffusion and segregation phenomena in social sciences, formation and dynamics of hotspots of criminal activity, phase transition problems involving nonlocal (long range) interactions and surface diffusion related to electric fluid droplets and complex fluids in nano technology and biology. The project involves a system of personnel exchanges between the home institutions, designed to provide a rich training experience for students and postdocs. In addition, there will be an emphasis month every year of the project in one of the home universities and a summer school designed to bring members of the group - including graduate students and postdocs - together to stimulate scientific progress. In this way the fruits of the research will be exposed to a broader audience, thereby, helping educate and attract a new generation of researchers to these exciting emerging mathematical challenges and ideas.
对“扩散过程”的数学描述和理解是许多科学领域的核心,从几何和概率到连续介质力学、流体动力学、种群动力学和博弈论等等。利玛窦流,纳维斯托克斯方程,非线性弹性,期货期权,都带有扩散,粘性,不确定性的元素,对应于类似的数学描述。在不同的情况和目标下,一个广泛的理论已经渗透到分析、几何和应用数学的广泛领域。然而,调查人员认为,有一些新的、正在出现的领域更加复杂。预计通过合作的努力,新的一般方法将出现,提供某种统一和凝聚力,就像今天存在的经典无穷小扩散过程及其在科学中的作用一样(建模、模拟、预测)。要研究的问题包括随机环境中的反应扩散现象,相变问题,非局部扩散过程和其他应用的人口动态问题,交通拥挤问题,社会科学中的扩散和隔离现象,犯罪活动热点的形成和动态,涉及纳米技术和生物学中与电流体液滴和复杂流体相关的非局部(远程)相互作用和表面扩散的相变问题。该项目涉及国内机构之间的人员交流系统,旨在为学生和博士后提供丰富的培训经验。此外,该项目每年将在一所国内大学举办一个重点月,并举办一个暑期学校,旨在将该小组的成员----包括研究生和博士后----聚集在一起,促进科学进步。通过这种方式,研究成果将被暴露给更广泛的受众,从而帮助教育和吸引新一代的研究人员,这些令人兴奋的新兴数学挑战和想法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis Caffarelli其他文献
Global C1,α regularity for Monge-Ampère equation and convex envelope
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Luis Caffarelli;Lan Tang;Xu-Jia Wang - 通讯作者:
Xu-Jia Wang
Luis Caffarelli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis Caffarelli', 18)}}的其他基金
Non-Linear Diffusion Modeling: From Geometry, to Materials, to Social Dynamics
非线性扩散建模:从几何到材料,再到社会动力学
- 批准号:
2000041 - 财政年份:2020
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Analytical and geometrical properties of non linear diffusion equations
非线性扩散方程的分析和几何性质
- 批准号:
1500871 - 财政年份:2015
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Current Trends in Analysis and Partial Differential Equations
分析和偏微分方程的当前趋势
- 批准号:
1540162 - 财政年份:2015
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Analytical and geometrical problems involving non linear diffusion processes
涉及非线性扩散过程的分析和几何问题
- 批准号:
1160802 - 财政年份:2012
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Analytical and Geometrical Problems in Non Linear Partial Differential Equations
非线性偏微分方程中的解析和几何问题
- 批准号:
0654267 - 财政年份:2007
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
On the Homogenization of some Free Boundary Problems
一些自由边界问题的齐次化
- 批准号:
0456647 - 财政年份:2005
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Analytical and Geometrical Aspects of Non Linear Partial Differential Equations
非线性偏微分方程的解析和几何方面
- 批准号:
0140338 - 财政年份:2002
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Analytical Aspects of Some Non-Linear Mathematical Models
一些非线性数学模型的分析方面
- 批准号:
9714758 - 财政年份:1997
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-linear Partial Differential Equations
数学科学:非线性偏微分方程
- 批准号:
9401168 - 财政年份:1994
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Mathematical Sciences: Park City/IAS Mathematics Institute
数学科学:帕克城/IAS 数学研究所
- 批准号:
9402739 - 财政年份:1994
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant