Studies of Exactly Solvable Models in Statistical Mechanics
统计力学中精确可解模型的研究
基本信息
- 批准号:9722159
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a continuing research project for the study of many of the unsolved problems in chiral Potts or generalized chiral clock models. Special cases have been introduced as effective models for the study of incommensurate states, wetting, and commensurate-incommensurate phase transitions. Such phenomena can occur in surface layers when the molecules in different layers have incompatible sizes; an example is ripple states in biomembranes. From a mathematical point of view, this research addresses a new class of cyclic hypergeometric functions, related to exact solutions found recently. New results will be pursued and connections between various fields of mathematics, physics, and other sciences will be further explored. New structures and models will be investigated further with analytic means, symbolic manipulation and numerical techniques, such as Monte Carlo analysis and systems on finite strips with mean fields on the boundaries. This should lead to better understanding of more general models.
这是一个持续的研究项目,研究手征Potts或广义手征时钟模型中许多未解决的问题。 特殊的情况下,已被引入作为有效的模型研究的无公度状态,润湿,和无公度相变。 当不同层中的分子具有不相容的尺寸时,这种现象可以发生在表面层中;一个例子是生物膜中的涟漪状态。 从数学的角度,本研究解决了一类新的循环超几何函数,最近发现的精确解。 将追求新的成果,并进一步探索数学,物理学和其他科学的各个领域之间的联系。新的结构和模型将进一步研究分析手段,符号操作和数值技术,如蒙特卡洛分析和系统的有限条上的边界上的平均场。这将有助于更好地理解更一般的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacques H Perk其他文献
Jacques H Perk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacques H Perk', 18)}}的其他基金
Study of Exactly Solvable Model Systems in Statistical Mechanics
统计力学中精确可解模型系统的研究
- 批准号:
0758139 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Studies of Exactly Solvable Models in Statistical Mechanics
统计力学中精确可解模型的研究
- 批准号:
0100041 - 财政年份:2001
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Studies of Exactly Solvable Models in Statistical Mechanics
统计力学中精确可解模型的研究
- 批准号:
9507769 - 财政年份:1995
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies of Exactly Solvable Models in Statistical Mechanics
数学科学:统计力学中精确可解模型的研究
- 批准号:
9307816 - 财政年份:1993
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Japan Long Term Visit: Study of Exactly Solvable Models in Statistical Mechanics
日本长期访问:统计力学精确可解模型研究
- 批准号:
9112563 - 财政年份:1991
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mathematical Sciences: Exact Analysis of Lattice Statistics Models and Applications
数学科学:格统计模型和应用的精确分析
- 批准号:
9106521 - 财政年份:1991
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Sciences: Exact Analysis of Lattice-Statistics Models and Applications to Biomembranes
数学科学:点阵统计模型的精确分析及其在生物膜中的应用
- 批准号:
8918989 - 财政年份:1990
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Exactly Solvable Models in Deep Learning
深度学习中的精确可解模型
- 批准号:
22KJ0949 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Properties of new types of orthogonal polynomials and extensions of exactly solvable quantum mechanical systems
新型正交多项式的性质及精确可解量子力学系统的推广
- 批准号:
19K03667 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exactly Solvable Stochastic Systems: Connections and Universality
精确可解的随机系统:联系和普遍性
- 批准号:
1855458 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Representation theory in exactly solvable systems
精确可解系统中的表示论
- 批准号:
FT180100099 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
ARC Future Fellowships
Exactly Solvable Stochastic Systems: Connections and Universality
精确可解的随机系统:联系和普遍性
- 批准号:
1949820 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Study of exotic quantum states emergent from strong spin-orbit coupling on the basis of exactly solvable models
基于精确可解模型研究强自旋轨道耦合产生的奇异量子态
- 批准号:
16K17747 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
New Fluctuation-Correlation Theorems in Exactly Solvable Models in Non-Equilibrium Statistical Mechanics
非平衡统计力学精确可解模型中的新涨落相关定理
- 批准号:
26400405 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on exactly solvable models for systems with nonequilibrium dynamics
非平衡动力学系统精确可解模型研究
- 批准号:
26610033 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Exactly Solvable Quantum Mechanics and New Orthogonal Polynomials
精确可解的量子力学和新的正交多项式
- 批准号:
25400395 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on two dimensional critical stochastic process by exactly solvable models and field theory
二维临界随机过程的精确可解模型和场论研究
- 批准号:
24540393 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




