Studies of Exactly Solvable Models in Statistical Mechanics

统计力学中精确可解模型的研究

基本信息

  • 批准号:
    0100041
  • 负责人:
  • 金额:
    $ 16.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2005-07-31
  • 项目状态:
    已结题

项目摘要

0100041Perk and Au-YangThis is a research project for the study of exactly solvable models of statistical mechanics, including the integrable chiral Potts model and various Ising models. These models will be studied by exact analytical and approximate numerical methods. Various physical phenomena will be studied, such as critical phenomena in quasi-periodic or aperiodic lattices, commensurate-incommensurate phase transitions, and frustration. The impact of frustration on the wavevector-dependent susceptibility will be analyzed by studying partially and fully frustrated triangular or checkerboard Ising models. New algorithms for the susceptibility series of planar Ising models, whose complexity grow polynomially, will be developed and the resulting long series expansions will be analyzed to get a better understanding of corrections to scaling. Many challenging problems remaining to be solved within the integrable chiral Potts model, such as the magnetization, spin-spin and energy-energy correlations. By its very nature, this project also involves several areas of mathematics of current interest.
0100041 Perk和Au-Yang这是一个研究统计力学精确可解模型的研究项目,包括可积手征Potts模型和各种Ising模型。 这些模型将通过精确分析和近似数值方法进行研究。 各种物理现象将被研究,如准周期或非周期晶格中的临界现象,相变-无公度相变和挫折。 通过研究部分和完全受挫三角形或棋盘伊辛模型,将分析挫折对波矢相关磁化率的影响。 平面伊辛模型,其复杂性的多项式增长的磁化率系列的新算法,将开发和由此产生的长系列扩展将进行分析,以更好地了解校正缩放。 在可积手征Potts模型中还有许多具有挑战性的问题有待解决,如磁化强度、自旋-自旋和能量-能量关联等。 就其本质而言,该项目还涉及当前感兴趣的几个数学领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacques H Perk其他文献

Jacques H Perk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacques H Perk', 18)}}的其他基金

Study of Exactly Solvable Model Systems in Statistical Mechanics
统计力学中精确可解模型系统的研究
  • 批准号:
    0758139
  • 财政年份:
    2008
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Studies of Exactly Solvable Models in Statistical Mechanics
统计力学中精确可解模型的研究
  • 批准号:
    9722159
  • 财政年份:
    1997
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Studies of Exactly Solvable Models in Statistical Mechanics
统计力学中精确可解模型的研究
  • 批准号:
    9507769
  • 财政年份:
    1995
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies of Exactly Solvable Models in Statistical Mechanics
数学科学:统计力学中精确可解模型的研究
  • 批准号:
    9307816
  • 财政年份:
    1993
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Japan Long Term Visit: Study of Exactly Solvable Models in Statistical Mechanics
日本长期访问:统计力学精确可解模型研究
  • 批准号:
    9112563
  • 财政年份:
    1991
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Exact Analysis of Lattice Statistics Models and Applications
数学科学:格统计模型和应用的精确分析
  • 批准号:
    9106521
  • 财政年份:
    1991
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Exact Analysis of Lattice-Statistics Models and Applications to Biomembranes
数学科学:点阵统计模型的精确分析及其在生物膜中的应用
  • 批准号:
    8918989
  • 财政年份:
    1990
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant

相似海外基金

Exactly Solvable Models in Deep Learning
深度学习中的精确可解模型
  • 批准号:
    22KJ0949
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Properties of new types of orthogonal polynomials and extensions of exactly solvable quantum mechanical systems
新型正交多项式的性质及精确可解量子力学系统的推广
  • 批准号:
    19K03667
  • 财政年份:
    2019
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exactly Solvable Stochastic Systems: Connections and Universality
精确可解的随机系统:联系和普遍性
  • 批准号:
    1855458
  • 财政年份:
    2019
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Representation theory in exactly solvable systems
精确可解系统中的表示论
  • 批准号:
    FT180100099
  • 财政年份:
    2019
  • 资助金额:
    $ 16.5万
  • 项目类别:
    ARC Future Fellowships
Exactly Solvable Stochastic Systems: Connections and Universality
精确可解的随机系统:联系和普遍性
  • 批准号:
    1949820
  • 财政年份:
    2019
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Study of exotic quantum states emergent from strong spin-orbit coupling on the basis of exactly solvable models
基于精确可解模型研究强自旋轨道耦合产生的奇异量子态
  • 批准号:
    16K17747
  • 财政年份:
    2016
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
New Fluctuation-Correlation Theorems in Exactly Solvable Models in Non-Equilibrium Statistical Mechanics
非平衡统计力学精确可解模型中的新涨落相关定理
  • 批准号:
    26400405
  • 财政年份:
    2014
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on exactly solvable models for systems with nonequilibrium dynamics
非平衡动力学系统精确可解模型研究
  • 批准号:
    26610033
  • 财政年份:
    2014
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Exactly Solvable Quantum Mechanics and New Orthogonal Polynomials
精确可解的量子力学和新的正交多项式
  • 批准号:
    25400395
  • 财政年份:
    2013
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on two dimensional critical stochastic process by exactly solvable models and field theory
二维临界随机过程的精确可解模型和场论研究
  • 批准号:
    24540393
  • 财政年份:
    2012
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了