BAC: Complex Predictive Pursuit by the Eye Compared to a Cerebellar Model of Pursuit
BAC:眼睛的复杂预测追踪与小脑追踪模型的比较
基本信息
- 批准号:9723846
- 负责人:
- 金额:$ 29.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-01 至 2001-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT: IBN - 9723846 Complex Predictive Pursuit by the Eye Compared to a Cerebellar Model of Pursuit - R. E. Kettner. One of the most remarkable characteristics of all animal life is the fluidity and coordination of movement that reaches high levels in skilled athletes and dancers, but is also present in everyday action. This ability is particularly remarkable given the slowness of individual neurons in the brain. The brain increases its effective processing speed by performing many computations in parallel, but this does not appear to remove long delays in processing visual information. The problem is particularly acute when one attempts to explain how the eye is able to track a target moving rapidly along a complex trajectory with essentially zero lag. If eye motion were controlled solely by changes in the current location of the target, one would expect the eye to lag the target by the 100 ms delay required to process visual input. Rather, it appears that the system is able to compensate for delays by predictive control. That is, it predicts how the eye should move based on highly delayed information. This project will conduct experiments in monkeys to determine the limits of eye movement prediction under a variety of conditions: (1) motion along circular and complex trajectories when target velocity is either constant or variable, (2) motion along a circular trajectory interrupted by a right-angle change in target direction at either predictable times and locations compared with identical target deviations at unpredictable times and locations, and (3) motion along circular and complex trajectories when the target is briefly turned off. The project will also continue the development of a biologically-realistic neural-network model of predictive eye control based on regions of the brain's cerebellum known to be involved in pursuit eye movements. This model uses a much larger number of internal units than other pursuit models (440 input mossy fibers, 6 000 internal granule cells, 2 Purkinje cell outputs) to generate complex predictive pursuit. The model learns new trajectories in a biologically- reasonable fashion by modifying granule-to-Purkinje cell synapses using visual error signals (from climbing fiber inputs). The behavioral data, neural response properties, and anatomical connections are all based on experiment. Data obtained in the above experiments will be used to test, and if necessary, modify the model. In addition, model performance will be compared with results from studies in other laboratories. Random target motions will be tested that can only be performed using visual input. New simulations will also test how well the model performs when the frequency of a learned trajectory is changed, and whether the model can learn more than one trajectory at the same time. All of this work should provide important information about the role of prediction in motor control, as well as increase our understanding of how brain systems accomplish predictive control.
摘要:IBN-9723846复杂眼睛预测追踪与小脑追踪模型的比较--R.E.Kettner。所有动物生命最显著的特征之一是动作的流动性和协调性,这种流动性和协调性在熟练的运动员和舞者身上达到了很高的水平,但也存在于日常动作中。考虑到大脑中单个神经元的迟缓,这种能力尤其显着。大脑通过并行执行许多计算来提高其有效的处理速度,但这似乎并不能消除处理视觉信息的长时间延迟。当人们试图解释眼睛如何能够跟踪沿着复杂轨迹快速移动的目标时,这个问题尤其严重,基本上没有滞后。如果眼球运动仅由目标物当前位置的变化来控制,人们会认为眼睛将落后目标物100ms的延迟来处理视觉输入。相反,该系统似乎能够通过预测控制来补偿延迟。也就是说,它根据高度延迟的信息预测眼睛应该如何移动。该项目将在猴子身上进行实验,以确定在各种条件下眼动预测的限度:(1)当目标速度恒定或可变时,沿圆形和复杂轨迹的运动;(2)在可预测的时间和位置上,被目标方向的直角变化打断的沿圆形轨迹的运动;(3)当目标短暂关闭时,沿圆形和复杂轨迹的运动。该项目还将继续开发一种生物现实的神经网络模型,用于预测眼睛控制,该模型基于大脑小脑中与追踪眼球运动有关的已知区域。与其他追踪模型相比,该模型使用了更多的内部单元(440个输入苔藓纤维,6000个内部颗粒细胞,2个浦肯野细胞输出)来产生复杂的预测追踪。该模型通过使用视觉错误信号(来自攀升的纤维输入)修改颗粒到浦肯野细胞的突触,以生物合理的方式学习新的轨迹。行为数据、神经反应特性和解剖联系都是基于实验的。在上述实验中获得的数据将用于测试,并在必要时对模型进行修改。此外,模型的性能将与其他实验室的研究结果进行比较。将测试只能使用视觉输入执行的随机目标运动。新的模拟还将测试当学习轨迹的频率发生变化时,模型的表现如何,以及模型是否可以同时学习多个轨迹。所有这些工作都应该提供有关预测在运动控制中的作用的重要信息,并增加我们对大脑系统如何实现预测控制的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Kettner其他文献
Ronald Kettner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Kettner', 18)}}的其他基金
Frontal Cortex Control of Remembered Movement Sequences
额叶皮层对记忆运动序列的控制
- 批准号:
9296232 - 财政年份:1992
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
Frontal Cortex Control of Remembered Movement Sequences
额叶皮层对记忆运动序列的控制
- 批准号:
8919867 - 财政年份:1990
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
相似国自然基金
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
- 批准号:31971055
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
- 批准号:31872651
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
边缘鳞盖蕨复合体种 (Microlepia marginata complex) 的网状进化及物种形成研究
- 批准号:31860044
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
益气通络颗粒及主要单体通过调节cAMP/PKA/Complex I通路治疗气虚血瘀证脑梗死的机制研究
- 批准号:81703747
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
生物钟转录抑制复合体 Evening Complex 调控茉莉酸诱导叶片衰老的分子机制研究
- 批准号:31670290
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
延伸子复合物(Elongator complex)的翻译调控作用
- 批准号:31360023
- 批准年份:2013
- 资助金额:51.0 万元
- 项目类别:地区科学基金项目
Complex I 基因变异与寿命的关联及其作用机制的研究
- 批准号:81370445
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
- 批准号:
2310746 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
Resolving Contentions for Complex Control Systems with Shared Resources using Robust Model Predictive Control
使用鲁棒模型预测控制解决具有共享资源的复杂控制系统的争用
- 批准号:
2218517 - 财政年份:2022
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
CAREER: Predictive Simulations of Complex Kinetic Systems
职业:复杂运动系统的预测模拟
- 批准号:
2153208 - 财政年份:2021
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
1945380 - 财政年份:2020
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
Predictive analytics of integrated genomic and clinical data using machine learning and complex statistical approaches
使用机器学习和复杂的统计方法对综合基因组和临床数据进行预测分析
- 批准号:
MR/S003711/2 - 财政年份:2019
- 资助金额:
$ 29.96万 - 项目类别:
Fellowship
Predictive analytics of integrated genomic and clinical data using machine learning and complex statistical approaches
使用机器学习和复杂的统计方法对综合基因组和临床数据进行预测分析
- 批准号:
MR/S003711/1 - 财政年份:2018
- 资助金额:
$ 29.96万 - 项目类别:
Fellowship
CAREER: Predictive Simulations of Complex Kinetic Systems
职业:复杂运动系统的预测模拟
- 批准号:
1654152 - 财政年份:2017
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Predictive Modeling of Polymer-Derived Ceramics: Discovering Methods for the Design and Fabrication of Complex Disordered Solids
DMREF:协作研究:聚合物衍生陶瓷的预测建模:探索复杂无序固体的设计和制造方法
- 批准号:
1729227 - 财政年份:2017
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant