CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
基本信息
- 批准号:1945380
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports research and educational activities to develop quantum mechanical and machine learning methods to understand and design complex multi-element alloys at the atomic level. The project focuses on complex concentrated alloys (CCAs), a class of novel alloys that mix atoms of different species at nearly equal ratios. The scientific drive for studying CCAs is to understand and utilize the vast chemical and structural design space associated with multiple elements in search of new materials properties. Current understanding about the stability, structures, and properties of alloys is limited to the corners and edges of the multi-element space, such as binary or dilute alloys. The information for CCAs close to the center of the composition space is virtually non-existent for systems with four or more elements. The project intends to fill this knowledge gap in alloy theory for these complex alloy systems by (i) establishing an accurate predictive understanding of the atomic structures in CCAs through a combination of quantum mechanical calculations and statistical mechanics methods, and (ii) integrating quantum mechanical calculations, empirical models and close-loop machine learning methods to predict the structural and defect features in CCAs for accelerated design of CCAs for structural or functional applications. The multidisciplinary nature of the project brings perspectives from multiple academic fields into the forefront of materials research. The focus of the technologically relevant CCAs will strengthen the U.S. leadership in fundamental alloy research. The education and outreach activities of the project includes five integrated parts that address learning tool innovation, broadening participation, youth material education, summer research exposure, and research career development. The project brings together national and local partners to create a multidisciplinary team with complementary expertise to strengthen Science, Technology, Engineering, and Mathematics education and raise the awareness of materials science. In collaboration with Amazon, a cloud-based learning app will be developed to transplant the PI’s research and introduce materials and data science to the general public. The PI will collaborate with SMASH Illinois to offer academic and social programs to underrepresented students to broaden participation in materials education. In parallel, summer camps with North Central College and Questek, as well as high school research programs with Adlai E. Stevenson High School will be expanded to expose the younger generation to materials science. The PI will also work closely with undergraduate and graduate students to foster multidisciplinary career development via project-based research programs.TECHNICAL SUMMARYThis CAREER award supports research and educational activities to develop first-principles and data-driven methods to understand the atomic nature of short range order (SRO) in complex concentrated alloys (CCAs) and how such chemical order influences lattice distortion, dynamics, and defect structures, thus creating opportunities for designing new advanced alloys. Severe lattice distortion is an important phenomenon that is correlated to a variety of physical and chemical properties in CCAs. However, the nature of severe lattice distortions in CCAs is poorly understood, especially with the coupling of SRO. The PI will study SRO and related lattice distortions in CCAs with a unique synergy of mechanism investigation, predictive modeling, and methodology development. The research will elucidate SRO on the structures of lattice distortions in CCAs, which will be utilized to quantify the impact of the distorted lattices on the phonon characteristics of CCAs. Results and methodology from bulk CCAs will be applied to establish a predictive mapping linking defect characteristics with local environments in CCAs, providing the foundation for computational design of CCAs for superior mechanical properties. The project will be driven by the parallel research on a hierarchical data-driven computational framework that enables efficient predictions of structure-property relationships for CCAs. The education and outreach activities of the project includes five integrated parts that address learning tool innovation, broadening participation, youth material education, summer research exposure, and research career development. The project brings together national and local partners to create a multidisciplinary team with complementary expertise to strengthen Science, Technology, Engineering, and Mathematics education and raise the awareness of materials science. In collaboration with Amazon, a cloud-based learning app will be developed to transplant the PI’s research and introduce materials and data science to the general public. The PI will collaborate with SMASH Illinois to offer academic and social programs to underrepresented students to broaden participation in materials education. In parallel, summer camps with North Central College and Questek, as well as high school research programs with Adlai E. Stevenson High School will be expanded to expose the younger generation to materials science. The PI will also work closely with undergraduate and graduate students to foster multidisciplinary career development via project-based research programs.This award is jointly supported by the Division of Materials Research and the NSF Office of Advanced Cyberinfrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该职业奖支持研究和教育活动,以开发量子力学和机器学习方法,以在原子水平上理解和设计复杂的多元素合金。该项目的重点是复杂浓缩合金(CCAs),这是一类以几乎相等的比例混合不同种类原子的新型合金。研究CCA的科学动力是理解和利用与多种元素相关的巨大化学和结构设计空间,以寻找新的材料特性。目前对合金的稳定性、结构和性质的理解仅限于多元素空间的角落和边缘,例如二元或稀合金。对于具有四个或更多元素的系统,靠近组合空间中心的CCA的信息几乎不存在。该项目旨在填补这些复杂合金系统的合金理论的知识空白,方法是(i)通过量子力学计算和统计力学方法的结合,建立对CCA中原子结构的准确预测理解,以及(ii)整合量子力学计算,经验模型和闭环机器学习方法来预测CCA中的结构和缺陷特征,以加速CCA的结构或功能应用设计。 该项目的多学科性质将多个学术领域的观点带入材料研究的最前沿。技术相关CCA的重点将加强美国在基础合金研究方面的领导地位。该项目的教育和外联活动包括五个综合部分,涉及学习工具创新、扩大参与、青年材料教育、夏季研究接触和研究职业发展。该项目汇集了国家和地方合作伙伴,创建一个具有互补专业知识的多学科团队,以加强科学,技术,工程和数学教育,并提高材料科学的认识。与亚马逊合作,将开发基于云的学习应用程序,以移植PI的研究,并向公众介绍材料和数据科学。PI将与SMASH伊利诺伊州合作,为代表性不足的学生提供学术和社会项目,以扩大材料教育的参与。与此同时,与北中央学院和Questek的夏令营,以及与Adlai E.史蒂文森高中将扩大,使年轻一代接触材料科学。PI还将与本科生和研究生密切合作,通过基于项目的研究计划促进多学科的职业发展。技术总结该职业奖支持研究和教育活动,以开发第一原理和数据驱动的方法,以了解复杂浓缩合金(CCA)中短程有序(SRO)的原子本质,以及这种化学顺序如何影响晶格畸变,动力学,和缺陷结构,从而为设计新的先进合金创造了机会。严重的晶格畸变是一个重要的现象,它与CCA的各种物理和化学性质有关。然而,严重的晶格畸变的性质,在CCAs是知之甚少,特别是与耦合的SRO。PI将研究SRO和CCA中相关的晶格畸变,并具有独特的机制研究,预测建模和方法开发的协同作用。本研究将阐明CCAs中晶格畸变结构的自组织振荡,并将其用于量化畸变晶格对CCAs声子特性的影响。批量CCA的结果和方法将用于建立将CCA中的缺陷特征与局部环境联系起来的预测映射,为CCA的计算设计提供基础,以获得上级机械性能。该项目将由一个分层数据驱动的计算框架的并行研究驱动,该框架能够有效地预测CCA的结构-性质关系。该项目的教育和外联活动包括五个综合部分,涉及学习工具创新、扩大参与、青年材料教育、夏季研究接触和研究职业发展。该项目汇集了国家和地方合作伙伴,创建一个具有互补专业知识的多学科团队,以加强科学,技术,工程和数学教育,并提高材料科学的认识。与亚马逊合作,将开发基于云的学习应用程序,以移植PI的研究,并向公众介绍材料和数据科学。PI将与SMASH伊利诺伊州合作,为代表性不足的学生提供学术和社会项目,以扩大材料教育的参与。与此同时,与北中央学院和Questek的夏令营,以及与Adlai E.史蒂文森高中将扩大,使年轻一代接触材料科学。PI还将与本科生和研究生密切合作,通过基于项目的研究计划促进多学科的职业发展。该奖项由材料研究部和NSF高级网络基础设施办公室共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Highly Localized C–N2 Sites for Efficient Oxygen Reduction
- DOI:10.1021/acscatal.0c00474
- 发表时间:2020-07
- 期刊:
- 影响因子:12.9
- 作者:Qiangjian Ju;Ruguang Ma;Yifan Hu;Beibei Guo;Qian Liu;Tiju Thomas;Tao Zhang;Minghui Yang;Wei Chen;Jiacheng Wang
- 通讯作者:Qiangjian Ju;Ruguang Ma;Yifan Hu;Beibei Guo;Qian Liu;Tiju Thomas;Tao Zhang;Minghui Yang;Wei Chen;Jiacheng Wang
Microstructure and mechanical behavior of additively manufactured CoCrFeMnNi high-entropy alloys: Laser directed energy deposition versus powder bed fusion
- DOI:10.1016/j.actamat.2023.118884
- 发表时间:2023-03-31
- 期刊:
- 影响因子:9.4
- 作者:Liu, Yanfang;Ren, Jie;Chen, Wen
- 通讯作者:Chen, Wen
Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy
- DOI:10.1126/sciadv.aaz4748
- 发表时间:2020-09-01
- 期刊:
- 影响因子:13.6
- 作者:Lee, Chanho;Kim, George;Liaw, Peter K.
- 通讯作者:Liaw, Peter K.
Elastic behavior of binary and ternary refractory multi-principal-element alloys
- DOI:10.1016/j.matdes.2022.110820
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:R. Feng;George Kim;Dunji Yu;Yan Chen;Wei Chen;P. Liaw;Ke An
- 通讯作者:R. Feng;George Kim;Dunji Yu;Yan Chen;Wei Chen;P. Liaw;Ke An
First-principles comparative study of Cr migration in O3 and O/P hybrid-phased NaCrO2
- DOI:10.1103/physrevmaterials.6.095403
- 发表时间:2022-09
- 期刊:
- 影响因子:3.4
- 作者:Jialiang Wei;L. Shaw;Wei Chen
- 通讯作者:Jialiang Wei;L. Shaw;Wei Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Chen其他文献
Nb-doped layered FeNi phosphide nanosheets for highly efficient overall water splitting under high current densities
掺铌层状 FeNi 磷化物纳米片可在高电流密度下实现高效的整体水分解
- DOI:
10.1039/d1ta00372k - 发表时间:
2021-04 - 期刊:
- 影响因子:0
- 作者:
Shuting Wen;Guangliang Chen;Wei Chen;Xianhui Zhang - 通讯作者:
Xianhui Zhang
Research on the Complexity of Information System Development
信息系统开发复杂性研究
- DOI:
10.2991/meici-15.2015.208 - 发表时间:
2015 - 期刊:
- 影响因子:0.9
- 作者:
Wei Chen;Yan Zhang - 通讯作者:
Yan Zhang
A real-time multi-constraints obstacle avoidance method based on LiDAR
一种基于LiDAR的实时多约束避障方法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Wei Chen;Jian Sun;Weishuo Li;Dapeng Zhao - 通讯作者:
Dapeng Zhao
Anionic Ln–MOF with tunable emission for heavy metal ion capture and l-cysteine sensing in serum
具有可调谐发射功能的阴离子 Ln−MOF,用于血清中的重金属离子捕获和 L-半胱氨酸传感
- DOI:
10.1039/c9ta13932j - 发表时间:
2020-03 - 期刊:
- 影响因子:11.9
- 作者:
Tiancheng Sun;Ruiqing Fan;Rui Xiao;Tingfeng Xing;Mingyue Qin;Yaqi Liu;Sue Hao;Wei Chen;Yulin Yang - 通讯作者:
Yulin Yang
Ingenious introduction of aminopropylimidazole to tune the hydrophobic selectivity of dodecyl-bonded stationary phase for environmental organic pollutants
巧妙引入氨基丙基咪唑来调节十二烷基键合固定相对环境有机污染物的疏水选择性
- DOI:
10.1016/j.microc.2022.107933 - 发表时间:
2022-09 - 期刊:
- 影响因子:4.8
- 作者:
Yan Wu;Panpan Cao;Yanhao Jiang;Yanjuan Liu;Yuefei Zhang;Wei Chen;Zhengwu Bai;Sheng Tang - 通讯作者:
Sheng Tang
Wei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Chen', 18)}}的其他基金
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
- 批准号:
2334385 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
2404816 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
BRITE Fellow: AI-Enabled Discovery and Design of Programmable Material Systems
BRITE 研究员:人工智能支持的可编程材料系统的发现和设计
- 批准号:
2227641 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys
合作研究:多主元合金表面氧化物形成的微观机制
- 批准号:
2219489 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
- 批准号:
2005661 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
1940114 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Data: HDR: Nanocomposites to Metamaterials: A Knowledge Graph Framework
合作研究:框架:数据:HDR:纳米复合材料到超材料:知识图框架
- 批准号:
1835782 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RUI: Poly (vinyl alcohol) Thin Film Dewetting by Controlled Directional Drying
RUI:通过受控定向干燥进行聚(乙烯醇)薄膜去湿
- 批准号:
1807186 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
- 批准号:
1662435 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
“Lignin-first”策略下镁碱催化原生木质素定向氧化为小分子有机酸的机制研究
- 批准号:21908075
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
- 批准号:51778175
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
- 批准号:
2339995 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
- 批准号:
2340765 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
- 批准号:
2342876 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Electronic and Optical Properties in Generalized Moire Systems from First Principles
职业:从第一原理看广义莫尔系统的电子和光学特性
- 批准号:
2238328 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
- 批准号:
2238516 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Molecular Mechanisms Underlying Redox Chemistry in Electrochemical Cells from First Principles
职业:从第一原理开始研究电化学电池中氧化还原化学的分子机制
- 批准号:
2145144 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
- 批准号:
2246394 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
- 批准号:
2143233 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant