Adaptive Discretizations for the Regularization of Inverse Problems

逆问题正则化的自适应离散化

基本信息

项目摘要

Many complex processes in the field of natural sciences, medicine and engineering are described by mathematical models with partial differential equations (PDEs). The mentioned systems of PDEs mostly contain unknown data, e.g. space-dependent coefficient functions, source terms, initial and boundary data, whose determination leads to high-dimensional inverse problems.The numerical effort for solving inverse problems with PDEs is usually much higher than for the numerical simulation of the underlying process with a given data set. Moreover the inherent instability of inverse problems requires the use of appropriate regularization techniques. Great potential for the construction of efficient algorithms for the solution of such inverse problems lies in adaptive discretizations. While the use of adaptive concepts for the choice of the discretization for numerical simulation has become prevalent in the last years, adaptivity in the context of inverse problems presents a new and highly relevant topic.The goal of the project consists in finding generally applicable and analytically justified methods for the adaptive discretization of inverse problems. In this process, the main focus is on the efficiency of the constructed algorithms on the one hand and on the rigorous convergence analysis in the context of regularization methods on the other hand.
自然科学、医学和工程领域的许多复杂过程都是通过偏微分方程(PDE)的数学模型来描述的。上述偏微分方程系统大多包含未知数据,例如空间相关系数函数、源项、初始和边界数据,其确定会导致高维反演问题。使用偏微分方程求解反演问题的数值工作量通常远高于使用给定数据集对基础过程进行数值模拟的工作量。此外,逆问题固有的不稳定性需要使用适当的正则化技术。构建解决此类逆问题的有效算法的巨大潜力在于自适应离散化。虽然在过去几年中使用自适应概念来选择数值模拟的离散化已经变得很普遍,但逆问题背景下的自适应性提出了一个新的且高度相关的主题。该项目的目标在于寻找普遍适用且分析合理的方法来逆问题的自适应离散化。在此过程中,主要关注点一方面是所构造算法的效率,另一方面是正则化方法中严格的收敛性分析。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Goal oriented adaptivity in the IRGNM for parameter identification in PDEs: I. reduced formulation
  • DOI:
    10.1088/0266-5611/30/4/045001
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Kaltenbacher, B.;Kirchner, A.;Veljovic, S.
  • 通讯作者:
    Veljovic, S.
A convergence analysis of regularization by discretization in preimage space
原像空间离散化正则化的收敛性分析
  • DOI:
    10.1090/s0025-5718-2012-02596-8
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Kaltenbacher;J. Offtermatt
  • 通讯作者:
    J. Offtermatt
Goal oriented adaptivity in the IRGNM for parameter identification in PDEs: II. all-at-once formulations
  • DOI:
    10.1088/0266-5611/30/4/045002
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Kaltenbacher, B.;Kirchner, A.;Vexler, B.
  • 通讯作者:
    Vexler, B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Boris Vexler其他文献

Professor Dr. Boris Vexler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
This PhD project is about the development of structure preserving (e.g. mass and total energy) finite element discretizations of flow models in Geophy
该博士项目是关于地球物理学中流动模型的结构保持(例如质量和总能量)有限元离散化的发展
  • 批准号:
    2753929
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2111387
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Tailored Entropy Stable Discretizations of Nonlinear Conservation Laws
职业:非线性守恒定律的定制熵稳定离散化
  • 批准号:
    1943186
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了