Numerical Methods for III-Posed Problems and Large Scale Eigenvalue Programs

III 提出问题和大规模特征值规划的数值方法

基本信息

  • 批准号:
    9732022
  • 负责人:
  • 金额:
    $ 29.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-08-15 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

This work concerns two topics in numerical linear algebra: 1) Regularization of ill-posed linear systems; 2) Solution of large, sparse eigenvalue problems. These topics share common features: a wide range of application problems; the use of iterative methods for large-scale problems; and interesting problems in matrix perturbation theory. When continuous ill-posed problems are discretized they result in ill-conditioned linear systems which must be regularized to yield accurate solutions. This part of the work has several goals. The first is to prove the folk theorem that if the components of the data vector with respect to the singular vectors of the matrix decay sufficiently fast then the conjugate gradient iteration will produce a regularizing set of solution vectors. The second is to compare the numerous formulations of discrete ill-posed problems to see which are most effective. The third is to further develop preconditioners to speed convergence of solution algorithms. The fourth is to improve data-gathering techniques so that the attainable accuracy from imaging is better, thus, for example, revealing smaller tumors or more information about distant stars. Over the past decade many new algorithms for finding clusters of eigenvalues of large matrices have been proposed. Although the effectiveness of some of these algorithms has been demonstrated empirically, analytic results are sparse. Fortunately, a large number of these methods share a common framework, so that it is possible to develop analytic tools that are widely applicable. As a start toward this goal, attention is focused on a new, promising method---singular vector enhancement---that fits in the framework. A preliminary analysis of a special case has already yielded valuable results on the relation of eigenvalues and singular values. The results of this project will impact the solution of ill-posed problems such as medical image enhancement, astronomical data processing, nondestructive testing, and spectroscopy, as well as eigenvalue problems arising in systems modeling (Markov chains), computational chemistry, and structural analysis.
本文涉及数值线性代数中的两个主题:1)病态线性系统的正则化;2)求解大型稀疏特征值问题。这些主题有一个共同的特点:广泛的应用问题;大规模问题的迭代方法的应用;以及矩阵摄动理论中有趣的问题。当连续病态问题被离散化时,就会得到病态的线性系统,而这些系统必须经过正则化才能得到精确的解。这部分工作有几个目标。首先是证明一个民间定理,即如果数据向量的分量相对于矩阵的奇异向量衰减得足够快,那么共轭梯度迭代将产生一个正则化的解向量集。第二步是比较离散病态问题的众多表述,看看哪一种最有效。三是进一步开发预处理,加快求解算法的收敛速度。第四是改进数据收集技术,以便从成像中获得更高的精度,例如,揭示更小的肿瘤或有关遥远恒星的更多信息。在过去的十年中,人们提出了许多寻找大矩阵特征值聚类的新算法。虽然其中一些算法的有效性已得到实证证明,但分析结果是稀疏的。幸运的是,许多这些方法共享一个公共框架,因此开发广泛适用的分析工具是可能的。作为实现这一目标的开始,人们的注意力集中在一种新的、有前途的方法上——奇异向量增强——它适合这个框架。对一个特殊情况的初步分析,已经对特征值与奇异值的关系得到了有价值的结果。这个项目的结果将影响病态问题的解决,如医学图像增强、天文数据处理、无损检测和光谱学,以及系统建模(马尔可夫链)、计算化学和结构分析中出现的特征值问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dianne O'Leary其他文献

Dianne O'Leary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dianne O'Leary', 18)}}的其他基金

Confidence and Misplaced Confidence in Image Reconstruction
图像重建中的信心和错误的信心
  • 批准号:
    1016266
  • 财政年份:
    2010
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Continuing Grant
Support of Householder Symposium XIV on Numerical Algebra; Whistler, British Columbia, June 14-18, 1999
支持第十四届住户数值代数研讨会;
  • 批准号:
    9970831
  • 财政年份:
    1999
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Standard Grant
U.S.-European Symposium on Numerical Algebra; June, 1996; Pontresina, Switzerland
美国-欧洲数值代数研讨会;
  • 批准号:
    9600471
  • 财政年份:
    1996
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Standard Grant
Numerical Methods for Ill-Posed Problems and Markov Chains
不适定问题和马尔可夫链的数值方法
  • 批准号:
    9503126
  • 财政年份:
    1995
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Continuing Grant
The Numerical Treatment of Markov Chains
马尔可夫链的数值处理
  • 批准号:
    9115568
  • 财政年份:
    1992
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Continuing Grant
Conjugate Gradient Algorithms For Nonlinear Elliptic Equations
非线性椭圆方程的共轭梯度算法
  • 批准号:
    7606595
  • 财政年份:
    1976
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
  • 批准号:
    2246796
  • 财政年份:
    2023
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Standard Grant
Phase III Development of a Valid, Reliable, Clinically Feasible Measure of Transactional Success in Aphasic Conversation: Modernizing Methods of Acquisition and Analysis of Discourse Data
失语对话中交易成功的有效、可靠、临床可行的衡量标准的第三阶段开发:话语数据采集和分析的现代化方法
  • 批准号:
    10617305
  • 财政年份:
    2022
  • 资助金额:
    $ 29.62万
  • 项目类别:
Accelerating biomarker development through novel statistical methods for analyzing phase III/IV studies
通过分析 III/IV 期研究的新统计方法加速生物标志物开发
  • 批准号:
    10568744
  • 财政年份:
    2022
  • 资助金额:
    $ 29.62万
  • 项目类别:
Collaborative Research: III: Medium: Conditional Transport: Theory, Methods, Computation, and Applications
合作研究:III:媒介:条件传输:理论、方法、计算和应用
  • 批准号:
    2212418
  • 财政年份:
    2022
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Standard Grant
III: Small: Comprehensive Methods to Learn to Augment Graph Data
III:小:学习增强图数据的综合方法
  • 批准号:
    2146761
  • 财政年份:
    2022
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Conditional Transport: Theory, Methods, Computation, and Applications
合作研究:III:媒介:条件传输:理论、方法、计算和应用
  • 批准号:
    2212419
  • 财政年份:
    2022
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Standard Grant
Phase III Development of a Valid, Reliable, Clinically Feasible Measure of Transactional Success in Aphasic Conversation: Modernizing Methods of Acquisition and Analysis of Discourse Data
失语对话中交易成功的有效、可靠、临床可行的衡量标准的第三阶段开发:话语数据采集和分析的现代化方法
  • 批准号:
    10431702
  • 财政年份:
    2022
  • 资助金额:
    $ 29.62万
  • 项目类别:
III: Small: RUI: Investigating Fragmentation Rules and Improving Metabolite Identification Using Graph Grammar and Statistical Methods
III:小:RUI:使用图语法和统计方法研究断裂规则并改进代谢物识别
  • 批准号:
    2053286
  • 财政年份:
    2020
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Standard Grant
CRII: III: Deep Learning Methods for Protein Inter-residue Distance Prediction
CRII:III:蛋白质残基间距离预测的深度学习方法
  • 批准号:
    1948117
  • 财政年份:
    2020
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Standard Grant
CRII: SCH: III: Novel Data-Driven Methods to Analyze Heterogeneous Healthcare Data
CRII:SCH:III:分析异构医疗数据的新型数据驱动方法
  • 批准号:
    1948399
  • 财政年份:
    2020
  • 资助金额:
    $ 29.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了