Numerical Methods for Ill-Posed Problems and Markov Chains
不适定问题和马尔可夫链的数值方法
基本信息
- 批准号:9503126
- 负责人:
- 金额:$ 22.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-08-01 至 1999-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns two topics in numerical linear algebra: the numerical treatment of Markov chains and regularization of ill-posed linear systems. The topics share common features: singular or nearly singular matrices; use of iterative methods for large-scale problems; problems in matrix perturbation; and connections with infinite dimensional problems. The computation of the steady-state vector of a Markov chain as well as other important quantities are being investigated. In particular, algorithms are being developed and analyzed for calculating mean first passage times and for computing the recurrence matrix of M/G/1 type queues. In addition aggregation methods with overlapping blocks and the behavior of chains with sluggish transients are being considered. When ill-posed problems are discretized they result in ill-conditioned linear systems which must be regularized to yield accurate solutions. There are three main goals in this work. The first is to prove the folk theorem that if the components of the data vector with respect to the singular vectors decay sufficiently fast then the conjugate gradient iteration will produce a regularizing set of solutions. The second is to treat problems with errors in the matrix by a regularized total-least-squares approach. The third is to further preconditioning strategies for iterative solution methods.
本课题涉及数值线性化中的两个课题 代数:马尔可夫链的数值处理和正则化 不适定线性系统 这些主题具有共同的特征: 或近似奇异矩阵;使用迭代方法解决大规模问题; 矩阵扰动问题;与 无穷维问题 一个稳定状态向量的计算 马尔可夫链以及其他重要的数量正在研究。 特别是,正在开发和分析用于计算的算法, 平均首次穿越时间和计算M/G/1型递推矩阵 排队。 此外,具有重叠块的聚合方法和 正在考虑具有迟滞瞬变的链的行为。 当 将不适定问题离散化,得到病态线性系统 其必须被正则化以产生精确的解。 有三 这项工作的主要目标。 第一个是证明民间定理,如果 数据向量相对于奇异向量的分量衰减 足够快,那么共轭梯度迭代将产生正则化 一套解决方案。 第二种是通过以下方式处理矩阵中存在错误的问题: 一种正则化的最小二乘方法三是进一步 迭代求解方法的预处理策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dianne O'Leary其他文献
Dianne O'Leary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dianne O'Leary', 18)}}的其他基金
Confidence and Misplaced Confidence in Image Reconstruction
图像重建中的信心和错误的信心
- 批准号:
1016266 - 财政年份:2010
- 资助金额:
$ 22.37万 - 项目类别:
Continuing Grant
Support of Householder Symposium XIV on Numerical Algebra; Whistler, British Columbia, June 14-18, 1999
支持第十四届住户数值代数研讨会;
- 批准号:
9970831 - 财政年份:1999
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
Numerical Methods for III-Posed Problems and Large Scale Eigenvalue Programs
III 提出问题和大规模特征值规划的数值方法
- 批准号:
9732022 - 财政年份:1998
- 资助金额:
$ 22.37万 - 项目类别:
Continuing Grant
U.S.-European Symposium on Numerical Algebra; June, 1996; Pontresina, Switzerland
美国-欧洲数值代数研讨会;
- 批准号:
9600471 - 财政年份:1996
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
The Numerical Treatment of Markov Chains
马尔可夫链的数值处理
- 批准号:
9115568 - 财政年份:1992
- 资助金额:
$ 22.37万 - 项目类别:
Continuing Grant
Conjugate Gradient Algorithms For Nonlinear Elliptic Equations
非线性椭圆方程的共轭梯度算法
- 批准号:
7606595 - 财政年份:1976
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding Patient and Family Perspectives of Accelerated Discharge Planning in the Critically Ill: A mixed-methods study
了解危重病人加速出院计划的患者和家庭观点:一项混合方法研究
- 批准号:
449814 - 财政年份:2020
- 资助金额:
$ 22.37万 - 项目类别:
Studentship Programs
A Study of Compulsory Methods for the Mentally Ill.
精神病人强制方法的研究。
- 批准号:
19K13964 - 财政年份:2019
- 资助金额:
$ 22.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Stable Methods and Solvers for Numerically Ill-conditioned Nonlinear Optimization Problems
数值病态非线性优化问题的稳定方法和求解器的开发
- 批准号:
15K21522 - 财政年份:2015
- 资助金额:
$ 22.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
development of public health nurses' care methods for supporting the person with mentally ill who was a target of the neighbors' complaints
制定公共卫生护士的护理方法,以支持邻居投诉的精神病患者
- 批准号:
25893250 - 财政年份:2013
- 资助金额:
$ 22.37万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of numerical methods for solving large-scale ill-conditioned linear system of equations and its applications
求解大规模病态线性方程组数值方法的发展及其应用
- 批准号:
24560518 - 财政年份:2012
- 资助金额:
$ 22.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularisation methods for solving nonlinear ill-posed inverse problems
求解非线性不适定反问题的正则化方法
- 批准号:
DE120101707 - 财政年份:2012
- 资助金额:
$ 22.37万 - 项目类别:
Discovery Early Career Researcher Award
Establishment of New Numerical Methods for Applied Inverse and Ill-Posed Problems
应用逆问题和不适定问题的新数值方法的建立
- 批准号:
16340024 - 财政年份:2004
- 资助金额:
$ 22.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical and Mathematical Analysis for the reconstruction for solutions of inverse and ill-posed problems by regularization methods
通过正则化方法重构逆问题和病态问题解的数值和数学分析
- 批准号:
13440031 - 财政年份:2001
- 资助金额:
$ 22.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Local Regularization Methods for Ill-Posed Inverse Problems: Fast Algorithms and Adaptive Parameter Selection
不适定反问题的局部正则化方法:快速算法和自适应参数选择
- 批准号:
0104003 - 财政年份:2001
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
Mathematical Sciences: Computational Methods for Ill-Posed Inverse Problems
数学科学:不适定反问题的计算方法
- 批准号:
9622119 - 财政年份:1996
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant