CRII: SCH: III: Novel Data-Driven Methods to Analyze Heterogeneous Healthcare Data

CRII:SCH:III:分析异构医疗数据的新型数据驱动方法

基本信息

项目摘要

The long term goal of this project is to improve the standard-of-care of patients and build clinicians’ trust in utilizing advanced machine learning and artificial intelligence tools for computational healthcare. The national push for Electronic Health Records through the 2009 Health Information Technology for Economic and Clinical Health (HITECH) Act and the recent advances of wearable sensor technologies has resulted in an exponential surge in volume, detail, and availability of digital health data. This provides an exciting opportunity for researchers, healthcare professionals, and the patients alike to infer richer, data-driven understanding of health and illness. However, unlike other data types, healthcare data is inherently noisy, has missing values, and comes from multiple heterogeneous sources such as lab tests, doctor notes, medical images, and monitor readings. These data properties make it very challenging for most existing machine learning approaches and statistical models to discover meaningful patterns of diseases or to make robust predictions. To address these challenges, this project will develop and validate novel data-driven methods based on powerful deep learning techniques to model the complex correlations and patterns present in the healthcare data. In particular, the proposed data-driven methods will learn disease-specific and patient-specific feature patterns from heterogeneous and limited healthcare data. The effectiveness of the proposed data-driven methods will be showcased on challenging and important healthcare prediction tasks such as early prediction of sepsis and predicting the outcome of Intensive Care Units patients. This project will advocate a model-based data-driven paradigm shift for computational healthcare, and it will focus on addressing the main challenges of analyzing healthcare data, i.e., heterogeneity and limited dataset size, by developing novel data-driven methods. The proposed data-driven methods will accelerate medical discovery and aid in clinical decision making in several ways: (a) connect and learn from the disconnected heterogeneous piles of healthcare data; (b) yield new representations of illness/diseases, and (c) build clinicians’ trust in the data-driven models. The technical aims of the project are divided into three thrusts. The first thrust will focus on developing a novel deep learning framework to learn shared feature representations from heterogeneous healthcare data. Specifically, the researchers will employ machine learning approaches, such as multi-view learning and correlation analysis, to exploit the correlation structures present within and across different healthcare data sources. In addition, adversarial training based domain adaptation techniques will be used to learn joint feature representations from multi-cohort patient populations. The second thrust will focus on feature learning from limited healthcare data by utilizing patient or task similarity networks and a few-shot learning framework. In particular, multi-task learning and embedding techniques will be used to learn feature representations from limited data available for a specific patient cohort or healthcare task. In the third thrust, model uncertainty of the proposed data-driven methods will be studied using ensembles and regularization techniques. The adequacy of the proposed data-driven solutions will be validated on real-world healthcare datasets for multiple clinically relevant prediction tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的长期目标是提高患者的护理标准,并建立临床医生对利用先进的机器学习和人工智能工具进行计算医疗保健的信任。通过2009年《经济和临床健康健康信息技术法案》(HITECH)和可穿戴传感器技术的最新进展,国家推动电子健康记录,导致数字健康数据的数量、细节和可用性呈指数级增长。这为研究人员,医疗保健专业人员和患者提供了一个令人兴奋的机会,可以推断出更丰富的,数据驱动的健康和疾病理解。然而,与其他数据类型不同,医疗保健数据本质上是嘈杂的,具有缺失值,并且来自多个异构源,例如实验室测试,医生笔记,医学图像和监视器读数。这些数据属性使得大多数现有的机器学习方法和统计模型在发现有意义的疾病模式或做出稳健的预测方面非常具有挑战性。为了应对这些挑战,该项目将开发和验证基于强大的深度学习技术的新型数据驱动方法,以模拟医疗保健数据中存在的复杂相关性和模式。特别是,所提出的数据驱动方法将从异构和有限的医疗保健数据中学习疾病特异性和患者特异性特征模式。所提出的数据驱动方法的有效性将在具有挑战性和重要的医疗预测任务中展示,例如败血症的早期预测和重症监护病房患者的预后预测。 该项目将倡导基于模型的数据驱动的计算医疗模式转变,并将重点解决分析医疗数据的主要挑战,即,异质性和有限的数据集大小,通过开发新的数据驱动的方法。所提出的数据驱动方法将加速医学发现并以几种方式帮助临床决策:(a)连接并从断开的异构医疗数据堆中学习;(B)产生疾病/疾病的新表示,以及(c)建立临床医生对数据驱动模型的信任。该项目的技术目标分为三个方面。第一个重点是开发一个新的深度学习框架,从异构的医疗数据中学习共享的特征表示。具体来说,研究人员将采用机器学习方法,如多视图学习和相关性分析,来利用不同医疗数据源内部和之间的相关性结构。此外,基于对抗训练的领域自适应技术将用于从多队列患者人群中学习关节特征表示。第二个重点是通过利用患者或任务相似性网络和少量学习框架,从有限的医疗数据中进行特征学习。特别是,多任务学习和嵌入技术将用于从特定患者队列或医疗保健任务可用的有限数据中学习特征表示。 在第三个推力中,将使用集成和正则化技术研究所提出的数据驱动方法的模型不确定性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fourier-Based Strategies to Improve Ethnic Feature Generation during Visible-to-Thermal Facial Translation (A work in progress)
基于傅里叶的策略在可见热面部转换过程中改善种族特征生成(正在进行的工作)
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ordun, Catherine;Raff, Edward;Purushotham, Sanjay
  • 通讯作者:
    Purushotham, Sanjay
Intelligent Sight and Sound: A Chronic Cancer Facial Pain Dataset
智能视觉和声音:慢性癌症面部疼痛数据集
Deep Multi-Sensor Domain Adaptation on Active and Passive Satellite Remote Sensing Data
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Huang;Sahara Ali;Sanjay Purushotham;Jianwu Wang;Chenxi Wang;Zhibo Zhang
  • 通讯作者:
    Xin Huang;Sahara Ali;Sanjay Purushotham;Jianwu Wang;Chenxi Wang;Zhibo Zhang
Fair and Interpretable Models for Survival Analysis
公平且可解释的生存分析模型
VDAM: VAE based domain adaptation for cloud property retrieval from multi-satellite data
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjay Purushotham其他文献

A review of Earth Artificial Intelligence
对地球人工智能的回顾
  • DOI:
    10.1016/j.cageo.2022.105034
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    4.400
  • 作者:
    Ziheng Sun;Laura Sandoval;Robert Crystal-Ornelas;S. Mostafa Mousavi;Jinbo Wang;Cindy Lin;Nicoleta Cristea;Daniel Tong;Wendy Hawley Carande;Xiaogang Ma;Yuhan Rao;James A. Bednar;Amanda Tan;Jianwu Wang;Sanjay Purushotham;Thomas E. Gill;Julien Chastang;Daniel Howard;Benjamin Holt;Chandana Gangodagamage;Aji John
  • 通讯作者:
    Aji John
Tracing Englacial Layers in Radargram via Semi-supervised Method: A Preliminary Result
通过半监督方法追踪雷达图中的冰川层:初步结果

Sanjay Purushotham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjay Purushotham', 18)}}的其他基金

CAREER: Trustworthy and Robust Federated Learning for Computational Healthcare
职业:用于计算医疗保健的值得信赖且强大的联邦学习
  • 批准号:
    2238743
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
  • 批准号:
    42377063
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
具有低聚合收缩和生态防龋双功能的埃洛石纳米管@SCH-79797改性复合树脂的研究
  • 批准号:
    82170950
  • 批准年份:
    2021
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
一类稳态Schödinger-Poisson-Slater方程标准化解的研究
  • 批准号:
    11501137
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
锥中修改的Poisson-Sch积分在无穷远点处的渐近行为及其应用
  • 批准号:
    U1304102
  • 批准年份:
    2013
  • 资助金额:
    30.0 万元
  • 项目类别:
    联合基金项目
酵母中Sch9蛋白激酶信号途径调控衰老的分子机理
  • 批准号:
    30671181
  • 批准年份:
    2006
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

Open Access Block Award 2024 - London Sch of Hygiene & Tropic. Medicine
2024 年开放访问区块奖 - 伦敦卫生学院
  • 批准号:
    EP/Z532368/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Research Grant
CRII: SCH: Towards Smart Patient Flow Management: Real-time Inpatient Length of Stay Modeling and Prediction
CRII:SCH:迈向智能患者流程管理:实时住院患者住院时间建模和预测
  • 批准号:
    2246158
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
  • 批准号:
    10816864
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306660
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
  • 批准号:
    2306708
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306790
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
SCH: Computer Vision Algorithms to Detect Tics In Patients with Tourette Syndrome
SCH:用于检测抽动秽语综合征患者抽动的计算机视觉算法
  • 批准号:
    10817272
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
SCH: A Novel Bias-mitigated Multimodal Oxygen Monitor
SCH:一种新型的消除偏差的多模式氧监测仪
  • 批准号:
    10816771
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
  • 批准号:
    10816667
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
SCH: Neonatal Facial Coding for Pain Recognition Monitoring System (PRAMS)
SCH:新生儿面部编码疼痛识别监测系统 (PRAMS)
  • 批准号:
    2205472
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了