Fast Reliable Algorithms for Structured Computations

用于结构化计算的快速可靠的算法

基本信息

  • 批准号:
    9732376
  • 负责人:
  • 金额:
    $ 15.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-09-01 至 2001-08-31
  • 项目状态:
    已结题

项目摘要

This project deals with the design of computational algorithms that blend together the practical virtues of efficiency and numerical accuracy for matrix problems with structure. The two requirements of speed and accuracy have often been regarded as competitive and, for this reason, the design of fast and numerically reliable algorithms for large-scale structured linear matrix equations has remained a significant open issue in many instances. Structured matrix equations arise in several applications in the disciplines of filtering, estimation, and control. In this way, the results of the proposed work will further play a concrete role in addressing some of the annoying discrepancies that have always existed in these areas between the theoretical findings and the practical results. These discrepancies are often due to the pitfalls of finite-precision implementations, especially in systems that involve interconnections of digital and analog components, and studies to resolve or ameliorate many of these difficulties have long been overdue. This investigation will address the challenge of combining numerical accuracy and structure exploiting techniques into a unifying framework. The project will build on the work recently done, will extend the results and the framework to a wider class of structured matrix problems, and will explore applications in filtering, estimation and control.
这个项目涉及的计算算法的设计,融合了效率和数值精度的矩阵问题的结构的实际优点。 这两个要求的速度和精度往往被认为是有竞争力的,因此,设计快速和数值可靠的算法,大规模结构化线性矩阵方程组在许多情况下仍然是一个重要的开放性问题。 结构化矩阵方程出现在滤波、估计和控制等学科的若干应用中。 这样,拟议工作的结果将进一步发挥具体作用,解决在这些领域理论研究结果与实际结果之间一直存在的一些令人讨厌的差异。 这些差异通常是由于有限精度实现的缺陷,特别是在涉及数字和模拟组件互连的系统中,解决或改善这些困难的研究早就应该进行了。 这项调查将解决的挑战相结合的数值精度和结构开发技术到一个统一的框架。 该项目将建立在最近完成的工作,将扩展的结果和框架,以更广泛的一类结构化矩阵问题,并将探讨在过滤,估计和控制的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ali Sayed其他文献

Psychology of Craving
贪爱心理学
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Sharma;B. Nepal;C. S. Moon;Anthony Chabenne;A. Khogali;Co Ojo;Esther Hong;Rochelle Gaudet;Ali Sayed;Amanda Jacob;Mujtaba Murtuza;Michelle L. Firlit
  • 通讯作者:
    Michelle L. Firlit

Ali Sayed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ali Sayed', 18)}}的其他基金

CIF: Small: Inference over Asymmetric Network and Data Structures
CIF:小:非对称网络和数据结构的推理
  • 批准号:
    1524250
  • 财政年份:
    2015
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Standard Grant
Online Learning in Big-Data Stream Mining
大数据流挖掘在线学习
  • 批准号:
    1407712
  • 财政年份:
    2014
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Standard Grant
CIF: Large: Collaborative Research: Cooperation and Learning Over Cognitive Networks
CIF:大型:协作研究:认知网络上的合作与学习
  • 批准号:
    1011918
  • 财政年份:
    2010
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Continuing Grant
CIF: SMALL: Explorations and Insights into Adaptive Networks, Animal Flocking Behavior, and Swarm Intelligence
CIF:小:对自适应网络、动物聚集行为和群体智能的探索和见解
  • 批准号:
    0942936
  • 财政年份:
    2009
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Standard Grant
NSF Workshop on Distributed Processing over Cognitive Networks
NSF 认知网络分布式处理研讨会
  • 批准号:
    0956382
  • 财政年份:
    2009
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Standard Grant
Adaptive Sampling Strategies with Application to Water Resource Management
自适应采样策略在水资源管理中的应用
  • 批准号:
    0725441
  • 财政年份:
    2007
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Standard Grant
Cyber Systems: Adaptive Distributed Systems Based on Cooperative and Combination Strategies
网络系统:基于合作和组合策略的自适应分布式系统
  • 批准号:
    0601266
  • 财政年份:
    2006
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Continuing Grant
Advanced Signal Processing for Ultra-Wide-Band (UWB) Communications in Wireless Networks
无线网络中超宽带 (UWB) 通信的高级信号处理
  • 批准号:
    0401188
  • 财政年份:
    2004
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Standard Grant
High-Performance Adaptive Receivers for Broadband Multi-User Communications
用于宽带多用户通信的高性能自适应接收器
  • 批准号:
    0208573
  • 财政年份:
    2002
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Continuing Grant
Estimation and Control with Bounded Data Uncertainties
有界数据不确定性的估计和控制
  • 批准号:
    9820765
  • 财政年份:
    1999
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Continuing Grant

相似海外基金

CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Standard Grant
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
  • 批准号:
    2340516
  • 财政年份:
    2024
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Continuing Grant
Computer Arithmetic for Cryptography and Reliable Security: Algorithms and Architectures
密码学和可靠安全的计算机算法:算法和架构
  • 批准号:
    RGPIN-2020-05798
  • 财政年份:
    2022
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Discovery Grants Program - Individual
Computer Arithmetic for Cryptography and Reliable Security: Algorithms and Architectures
密码学和可靠安全的计算机算法:算法和架构
  • 批准号:
    RGPIN-2020-05798
  • 财政年份:
    2021
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
  • 批准号:
    1955196
  • 财政年份:
    2020
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
  • 批准号:
    1955353
  • 财政年份:
    2020
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Continuing Grant
Computer Arithmetic for Cryptography and Reliable Security: Algorithms and Architectures
密码学和可靠安全的计算机算法:算法和架构
  • 批准号:
    RGPIN-2020-05798
  • 财政年份:
    2020
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
  • 批准号:
    RGPIN-2015-04899
  • 财政年份:
    2019
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CDS&E: Theoretical Foundations and Algorithms for L1-Norm-Based Reliable Multi-Modal Data Analysis
合作研究:CDS
  • 批准号:
    1808591
  • 财政年份:
    2018
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Theoretical Foundations and Algorithms for L1-Norm-Based Reliable Multi-Modal Data Analysis
合作研究:CDS
  • 批准号:
    1808582
  • 财政年份:
    2018
  • 资助金额:
    $ 15.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了