CAREER: Neural Network Strategy for Machining When Data is Sparse
职业:数据稀疏时的神经网络加工策略
基本信息
- 批准号:9733747
- 负责人:
- 金额:$ 25.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-01 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMI-9733747 Twomey Artificial Neural Networks (ANN) require large numbers of observations to ensure good generalization, and a large number of independent observations (or data) to evaluate the networks generalization performance. ANN are potentially one of the most important data processing technologies in a truly intelligent system for the monitoring and control of manufacturing processes. However, manufacturers are often reluctant, if not resistant, to use an ANN approach because of the associated costs of user expertise, long development times, and the need for large amounts of training data. Very little research has been performed on evaluation methods, and the problems of training and evaluation concurrently, when data is sparse, have been overlooked. The research objective of this CAREER project is to develop an ANN training and evaluation strategy for manufacturing situations where data is sparse. The approach in the project seeks the simultaneous use of sparse data for both network training and evaluation. The results of this research will be applied to two manufacturing processes: drilling and electrochemical machining. The utilization of ANN and other information processing technologies will be developed into courses for the undergraduate curriculum. The research will increase the utility of ANN through the development of an ANN training and validation strategy in cases where data is sparse. Together with the development of curriculum in information processing, the project will provide a means for attracting talented students to careers in research, and will embody practices that encourage women and ethnic minorities to see themselves as tomorrow's engineers.
电话:+9733747 人工神经网络(ANN)需要大量的观测值来保证良好的泛化能力,同时需要大量的独立观测值(或数据)来评估网络的泛化性能。 人工神经网络(ANN)是一种潜在的最重要的数据处理技术,在一个真正的智能系统,用于监测和控制的制造过程。 然而,制造商通常不愿意(如果不是抵制的话)使用ANN方法,因为用户专业知识的相关成本,开发时间长,并且需要大量的训练数据。很少有研究已经进行评估方法,和训练和评估的问题,同时,当数据稀疏,被忽视。 这个CAREER项目的研究目标是开发一个人工神经网络的训练和评估策略的制造情况下,数据是稀疏的。 该项目中的方法寻求同时使用稀疏数据进行网络训练和评估。本研究的结果将应用于两个制造过程:钻孔和电化学加工。 人工神经网络和其他信息处理技术的利用将被开发成本科课程的课程。 这项研究将增加人工神经网络的效用,通过开发一个人工神经网络的训练和验证策略的情况下,数据是稀疏的。 该项目将与信息处理课程的开发一起,为吸引有才华的学生从事研究职业提供一种手段,并将体现鼓励妇女和少数族裔将自己视为明天的工程师的做法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janet Twomey其他文献
Estimating nonprocess energy from building energy consumption
- DOI:
10.1007/s12053-012-9165-7 - 发表时间:
2012-08-15 - 期刊:
- 影响因子:4.000
- 作者:
Michael Overcash;Khaled Bawaneh;Janet Twomey - 通讯作者:
Janet Twomey
Life cycle and nano-products: end-of-life assessment
- DOI:
10.1007/s11051-012-0720-0 - 发表时间:
2012-02-09 - 期刊:
- 影响因子:2.600
- 作者:
Eylem Asmatulu;Janet Twomey;Michael Overcash - 通讯作者:
Michael Overcash
Janet Twomey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janet Twomey', 18)}}的其他基金
NSF ADVANCE Catalyst: A Catalyst to Increase the Representation and Advancement of Women and Underrepresented Minorities in Academic STEM Careers at Wichita State University
NSF ADVANCE Catalyst:威奇托州立大学学术 STEM 职业中增加女性和代表性不足的少数族裔的代表性和进步的催化剂
- 批准号:
1937921 - 财政年份:2019
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Workshop to Scope an Effective Environmental Genome Mapping Initiative
有效环境基因组绘图计划范围研讨会
- 批准号:
1743682 - 财政年份:2017
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
SEP: Collaborative: Achieving a Sustainable Energy Pathway for Wind Turbine Blade Manufacturing
SEP:协作:实现风力涡轮机叶片制造的可持续能源途径
- 批准号:
1230891 - 财政年份:2012
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Workshop:Energy/Materials Dimensions of Engineering in Evidence-Based Healthcare
研讨会:循证医疗保健工程的能源/材料维度
- 批准号:
1037961 - 财政年份:2010
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
EAGER: Energy Use in Healthcare Services
EAGER:医疗保健服务中的能源使用
- 批准号:
0946342 - 财政年份:2009
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Wichita State University (WSU) Industry University Cooperative Research Center for the Reduction of Waste in Aerospace Logistic Systems
威奇托州立大学 (WSU) 工业大学减少航空航天物流系统废物合作研究中心
- 批准号:
0654337 - 财政年份:2007
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Sustainable Manufacturing: IV Global Conference on Sustainable Product Development and Life Cycle Engineering; held in Sao Carolos, Sao Paulo, Brazil; Oct. 3-6, 2006
可持续制造:第四届可持续产品开发和生命周期工程全球会议;
- 批准号:
0642392 - 财政年份:2006
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Research Study: Inter-Relationship of Operational Decisions and Environmental Impacts
研究:运营决策与环境影响的相互关系
- 批准号:
0537839 - 财政年份:2005
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Research Planning Grant: Analysis and Maximization of Large Complex Industrial Systems Through Distributed Simulation
研究计划资助:通过分布式仿真分析和最大化大型复杂工业系统
- 批准号:
9622132 - 财政年份:1996
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Proof Sharing and Transfer for Boosting Neural Network Verification
职业:促进神经网络验证的证明共享和转移
- 批准号:
2238079 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
- 批准号:
2238124 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
CAREER: Developing Neural Network Theory for Uncovering How the Brain Learns
职业:发展神经网络理论以揭示大脑如何学习
- 批准号:
2239780 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
CAREER: DeepMatter: A Scalable and Programmable Embedded Deep Neural Network
职业:DeepMatter:可扩展且可编程的嵌入式深度神经网络
- 批准号:
2348983 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
CAREER: A Multichannel Convolutional Neural Network Framework for Prediction of Damage Nucleation Sites in Microstructure
职业:用于预测微观结构中损伤成核位点的多通道卷积神经网络框架
- 批准号:
2341922 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
CAREER: Towards theoretical foundations of neural network based representation learning
职业:迈向基于神经网络的表示学习的理论基础
- 批准号:
2145703 - 财政年份:2022
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
CAREER: A Multichannel Convolutional Neural Network Framework for Prediction of Damage Nucleation Sites in Microstructure
职业生涯:用于预测微观结构中损伤成核位点的多通道卷积神经网络框架
- 批准号:
2142164 - 财政年份:2022
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
CAREER: IIS: RI: Foundations of Deep Neural Network Robustness and Efficiency
职业:IIS:RI:深度神经网络鲁棒性和效率的基础
- 批准号:
2144960 - 财政年份:2022
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
CAREER: Deciphering the neural network orchestrating sex differences in metabolic circadian rhythms
职业:破译协调代谢昼夜节律性别差异的神经网络
- 批准号:
2045267 - 财政年份:2021
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
CAREER: Neural Network-Inspired Information Processing Beyond the Binary Digital Abstraction
职业:超越二进制数字抽象的神经网络启发信息处理
- 批准号:
1942900 - 财政年份:2020
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant