CAREER: Neural Network-Inspired Information Processing Beyond the Binary Digital Abstraction

职业:超越二进制数字抽象的神经网络启发信息处理

基本信息

  • 批准号:
    1942900
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

This project approaches the question of higher performance and better energy efficiency in electronic chip design with two key insights from biological systems: non-Boolean information encoding (analog processing in brain), and co-localized memory and computation (as in brain synapses). The specific objective of this project is to create a design framework for efficient information processing with intrinsic non-binary representations and in-memory memory and computation. If successful, this project can shed light on the fundamental role of information encoding and its physical implementation in determining system energy efficiency, as well as provide practical design automation methodology to infuse computation and learning into the analog/mixed-signal (AMS) domain before the digitalization step. Apart from its technological impacts, the integrated educational plan of this project is to empower students from all backgrounds with interdisciplinary experience and to cultivate a community of lifelong learners with social awareness.The project will enable joint optimization of circuit, architecture, and algorithm in a seamless manner across wide-range of applications including in-memory computing (IMC) and near-sensor processing (NSP), and consists of three major research thrusts: (1) to advance AMS design automation, novel neural network-inspired model abstraction, and hardware substrate will be developed to enable a streamlined design flow that uses AMS circuits as building blocks for information processing; (2) to support flexible and efficient in-memory computing architecture, this project will build intelligent and malleable peripheral interfaces and compilation framework by leveraging the AMS design methodology developed earlier; (3) to address the energy efficiency challenge in resource-constrained sensor systems, it will explore a context-aware analog-to-information frontend design by developing efficient near-sensor processing with multiple signal channels and multiple sensing modalities. These will serve as building blocks towards understanding the holistic interactions and design trade-offs of performance, efficiency, safety, and security in heterogeneous systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过生物系统的两个关键见解来解决电子芯片设计中更高性能和更好能效的问题:非布尔信息编码(大脑中的模拟处理)和共定位记忆和计算(如大脑突触)。该项目的具体目标是创建一个具有内在非二进制表示和内存内存和计算的有效信息处理的设计框架。如果成功,该项目可以阐明信息编码及其在确定系统能源效率方面的物理实现的基本作用,并提供实用的设计自动化方法,在数字化步骤之前将计算和学习注入模拟/混合信号(AMS)领域。除了对科技的影响外,该项目的综合教育计划是为不同背景的学生提供跨学科的经验,并培养一个具有社会意识的终身学习者社区。该项目将在包括内存计算(IMC)和近传感器处理(NSP)在内的广泛应用中以无缝的方式联合优化电路、架构和算法,并由三个主要研究重点组成:(1)推进AMS设计自动化,开发新颖的神经网络启发的模型抽象和硬件基板,以实现使用AMS电路作为信息处理构建块的简化设计流程;(2)为了支持灵活高效的内存计算架构,本项目将利用先前开发的AMS设计方法,构建智能和可延展的外设接口和编译框架;(3)为了解决资源受限传感器系统中的能源效率挑战,它将通过开发具有多信号通道和多种传感模式的高效近传感器处理来探索上下文感知的模拟-信息前端设计。这些将作为理解异构系统中整体交互和设计权衡性能、效率、安全性和安全性的构建块。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural-PIM: Efficient Processing-In-Memory With Neural Approximation of Peripherals
  • DOI:
    10.1109/tc.2021.3122905
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Weidong Cao;Yilong Zhao;Adith Boloor;Yinhe Han;Xuan Zhang;Li Jiang
  • 通讯作者:
    Weidong Cao;Yilong Zhao;Adith Boloor;Yinhe Han;Xuan Zhang;Li Jiang
Hercules: Heterogeneity-Aware Inference Serving for At-Scale Personalized Recommendation
LeCA: In-Sensor Learned Compressive Acquisition for Efficient Machine Vision on the Edge
RoSE: Robust Analog Circuit Parameter Optimization with Sampling-Efficient Reinforcement Learning
Domain knowledge-infused deep learning for automated analog/radio-frequency circuit parameter optimization
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuan Zhang其他文献

Investigation on thermal management performance of wedge‐shaped microchannels for rectangular Li‐ion batteries
矩形锂离子电池楔形微通道热管理性能研究
Regulation of embryo implantation by nitric oxide in mouse
一氧化氮对小鼠胚胎着床的调节
  • DOI:
    10.1360/02tb9322
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuan Zhang;Hong;Hai;Qinglei Li;Dong;Dong;Guo;Cheng Zhu
  • 通讯作者:
    Cheng Zhu
Joint Design of Training and Hardware Towards Efficient and Accuracy-Scalable Neural Network Inference
训练和硬件的联合设计以实现高效且准确的可扩展神经网络推理
Building Block Symmetry Relegation Induces Mesopore and Abundant Open-Metal Sites in Metal–Organic Frameworks for Cancer Therapy
结构单元对称性降级在用于癌症治疗的金属有机框架中诱导介孔和丰富的开放金属位点
  • DOI:
    10.31635/ccschem.021.202000634
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Jing Sun;Xuan Zhang;Dong Zhang;Ying-Pin Chen;Fei Wang;Lan Li;Tian-Fu Liu;Huanghao Yang;Jibin Song;Rong Cao
  • 通讯作者:
    Rong Cao
Reinforced Swin-Convs Transformer for Simultaneous Underwater Sensing Scene Image Enhancement and Super-resolution
增强型 Swin-Convs 变压器,用于同步水下传感场景图像增强和超分辨率

Xuan Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuan Zhang', 18)}}的其他基金

Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2416375
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2328855
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Atmospheric Lifecycle of Highly Oxygenated Multifunctional Compounds
高含氧多功能化合物的大气生命周期
  • 批准号:
    2131199
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Medium: Modular Power Orchestration at the Meso-scale
CPS:中:中观规模的模块化电源编排
  • 批准号:
    1739643
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: SaTC: Investigation of Side-Channel Attack Vulnerability in Near-Threshold Computing Systems
CRII:SaTC:近阈值计算系统中的侧通道攻击漏洞调查
  • 批准号:
    1657562
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Proof Sharing and Transfer for Boosting Neural Network Verification
职业:促进神经网络验证的证明共享和转移
  • 批准号:
    2238079
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
  • 批准号:
    2238124
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Developing Neural Network Theory for Uncovering How the Brain Learns
职业:发展神经网络理论以揭示大脑如何学习
  • 批准号:
    2239780
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: DeepMatter: A Scalable and Programmable Embedded Deep Neural Network
职业:DeepMatter:可扩展且可编程的嵌入式深度神经网络
  • 批准号:
    2348983
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: A Multichannel Convolutional Neural Network Framework for Prediction of Damage Nucleation Sites in Microstructure
职业:用于预测微观结构中损伤成核位点的多通道卷积神经网络框架
  • 批准号:
    2341922
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Towards theoretical foundations of neural network based representation learning
职业:迈向基于神经网络的表示学习的理论基础
  • 批准号:
    2145703
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: A Multichannel Convolutional Neural Network Framework for Prediction of Damage Nucleation Sites in Microstructure
职业生涯:用于预测微观结构中损伤成核位点的多通道卷积神经网络框架
  • 批准号:
    2142164
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: IIS: RI: Foundations of Deep Neural Network Robustness and Efficiency
职业:IIS:RI:深度神经网络鲁棒性和效率的基础
  • 批准号:
    2144960
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Deciphering the neural network orchestrating sex differences in metabolic circadian rhythms
职业:破译协调代谢昼夜节律性别差异的神经网络
  • 批准号:
    2045267
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Uncovering the Impact of Traditional and Novel Chronic Stimulation Modalities on Neural Excitability and Native Neuronal Network Function
职业:揭示传统和新型慢性刺激方式对神经兴奋性和天然神经元网络功能的影响
  • 批准号:
    1943906
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了