Partial Differential Equations; Fundamental Solutions and Applications

偏微分方程;

基本信息

  • 批准号:
    9800605
  • 负责人:
  • 金额:
    $ 26.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

DMS-9800605 Abstract of research proposal "Partial Differential Equations" by Richard Beals, Department of Mathematics, Yale University The principal goal of this project is to find solution operators in as explicit a form as possible for model second order linear operators of various types: subelliptic operators, such as those associated to boundary problems in complex domains; degenerate elliptic, and associated degenerate parabolic and weakly hyperbolic operators; and operators of mixed type, such as those that occur in statistical physics. This continues, and expands considerably on, earlier work with B.Gaveau and P.C.Greiner which has produced explicit formulae and optimal parametrices for a number of model subelliptic operators associated to strongly and weakly pseudoconvex domains. In another direction, work is planned with D.H.Sattinger on completely integrable equations, focussing on the spectral and inverse spectral transforms for energy dependent potentials. Most physical and geometric phenomena are described by partial differential equations, typically by equations of second order. Examples include the equations that describe the behavior of sound, light, radiation, diffusion, nuclear processes, and so on. Exact solutions for the model equations of classical physics have played a central role in the development both of mathematical physics and of the general theory of partial differential equations. Much of the advance in the latter theory in this century has been due to refinements in the technique for approximating the solutions of more complex equations, both theoretically and numerically. Nevertheless among these more complex equations are models for which it is possible to find exact solutions, and it is hoped that the exact solutions will again play a role in our understanding at a more detailed level. This proposal describes certain linear equations of interest for which it may be possible, building on recent wor k, to obtain fairly explicit exact solutions. It also proposes further work on a widely studied technique that provides explicit solutions of certain types of nonlinear partial differential equations. Among these equations are those that describe water waves, in certain circumstances, and the propagation of pulses in optical fibers.
DMS-9800605研究提案摘要“偏微分方程” 作者:Richard Beals,耶鲁大学数学系 这个项目的主要目标是找到解决方案运营商 以尽可能明确形式来模拟二阶线性 各种类型的算子:次椭圆算子,例如与复域中的边界问题相关的算子;退化椭圆算子, 和相关的退化抛物和弱双曲算子;和混合型算子,如那些发生在统计 物理学 这是对早期工作的继续和扩展 与B.Gaveau和P.C.Greiner合作, 一类模型次椭圆算子的最优参数 强伪凸域和弱伪凸域。 在另一个方向上,计划与D.H.Sattinger一起研究完全可积的 方程,侧重于频谱和逆频谱变换 能量依赖的潜力。 大多数物理和几何现象都是用局部的 微分方程,通常是二阶方程。 示例包括描述以下行为的方程: 声、光、辐射、扩散、核过程等等。 经典物理模型方程的精确解有 在数学物理和偏微分方程的一般理论的发展中发挥了核心作用。 后一种理论在本世纪的许多进展是由于 在近似的解决方案的技术的改进 更复杂的方程,无论是理论上还是数值上。 然而,在这些更复杂的方程中, 有可能找到确切的解决办法,希望 精确解将再次在我们的理解中发挥作用, 详细水平。 这个建议描述了某些线性方程, 在最近工作的基础上, 得到相当明确的精确解。 它还建议进一步 致力于一项广泛研究的技术,该技术提供了明确的解决方案 某些类型的非线性偏微分方程。 之间 这些方程是描述水波的方程,在某些情况下, 环境以及脉冲在光纤中的传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Beals其他文献

L p and Hölder estimates for pseudodifferential operators: sufficient conditions
伪微分算子的 L p 和 Hölder 估计:充分条件
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Beals;Richard Beals
  • 通讯作者:
    Richard Beals
Action-angle variables for the Gel'fand-Dikii flows
Estimates on kernels for the $$\bar \partial $$ -equation and the $$\bar \partial $$ -Neumann problem
  • DOI:
    10.1007/bf01446558
  • 发表时间:
    1991-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Richard Beals;Nancy K. Stanton
  • 通讯作者:
    Nancy K. Stanton
Metrics and geodesics induced by order relations
  • DOI:
    10.1007/bf01115107
  • 发表时间:
    1967-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Richard Beals;David H. Krantz
  • 通讯作者:
    David H. Krantz
Exact solutions and branching of singularities for some hyperbolic equations in two variables
  • DOI:
    10.1016/j.jde.2009.02.023
  • 发表时间:
    2009-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Beals;Yakar Kannai
  • 通讯作者:
    Yakar Kannai

Richard Beals的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Beals', 18)}}的其他基金

Mathematical Sciences: Partial Differential Equations and Analysis
数学科学:偏微分方程与分析
  • 批准号:
    9423746
  • 财政年份:
    1995
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Partial Differential Equations & Analysis
数学科学:偏微分方程
  • 批准号:
    9213595
  • 财政年份:
    1992
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analysis: Partial Differential Equations, Fourier & Complex Analysis and Group Project in Mathematical Wavelets
数学科学:分析:偏微分方程、傅立叶
  • 批准号:
    8916968
  • 财政年份:
    1989
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Stability Theory and Groups
数学科学:稳定性理论和群
  • 批准号:
    8413048
  • 财政年份:
    1984
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Logical Issues in Constructive Mathematics, and Metamathematics of Algebra
数学科学:构造数学中的逻辑问题和代数元数学
  • 批准号:
    8402831
  • 财政年份:
    1984
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Partial Differential Equations & Analysis
数学科学:偏微分方程
  • 批准号:
    8402637
  • 财政年份:
    1984
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Continuing Grant
Conference in Modern Analysis and Probability; New Haven, Connecticut; June 8-11, 1982 (Mathematical Sciences)
现代分析和概率会议;
  • 批准号:
    8118339
  • 财政年份:
    1982
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Standard Grant
Partial Differential Equations and Analysis
偏微分方程与分析
  • 批准号:
    8104234
  • 财政年份:
    1981
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Continuing Grant
Invariant Differential Operations on Lie Groups
李群上的不变微分运算
  • 批准号:
    7902662
  • 财政年份:
    1979
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Standard Grant
Partial Differential Equations and Analysis
偏微分方程与分析
  • 批准号:
    7802945
  • 财政年份:
    1978
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
  • 批准号:
    DP220100937
  • 财政年份:
    2023
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 26.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了