Problems at the Interface of Analysis with Geometry and Physics

几何与物理分析的交叉问题

基本信息

  • 批准号:
    9800783
  • 负责人:
  • 金额:
    $ 25.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-9800783 Principal Investigator: Duong Phong Abstract: The influence of mathematical analysis has increased considerably over the last few decades. However, the field is at an important new juncture, where analytical methods have to be blended with techniques and insights from other fields, most particularly geometry, probability, and theoretical physics. This is a recurrent feature in the proposal. More specifically, the proposal addresses issues of bounds and stability for oscillatory integrals, regularity of Radon transforms and degenerate Fourier integral operators, asymptotic behavior of Green's functions, exact solutions of supersymmetric field and string theories, Hamiltonian theory of solitons and non-linear WKB methods. These are arguably among the most pressing problems in mathematics and theoretical physics today. Oscillatory integrals are, for example, a well-known feature of any physical scattering process, and progress along the lines suggested here can reduce greatly the extensive effort presently required for their numerical studies. On the other hand, the problems in the proposal concerning supersymmetric theories reflect very recent advances, indicating a deep and surprising correspondence between three seemingly different fields - namely, supersymmetric gauge theories, soliton equations, and Riemann surfaces. The origin of this correspondence is still mysterious, and it may well be essential to on-going attempts at understanding the laws of nature at their most fundamental level.
摘要:在过去的几十年里,数学分析的影响显著增加。然而,该领域正处于一个重要的新关头,分析方法必须与其他领域的技术和见解相结合,尤其是几何、概率论和理论物理学。这是提案中反复出现的特点。更具体地说,该提案解决了振荡积分的边界和稳定性,Radon变换的正则性和退化傅立叶积分算子,格林函数的渐近行为,超对称场和弦理论的精确解,孤子的哈密顿理论和非线性WKB方法等问题。这些可以说是当今数学和理论物理中最紧迫的问题之一。例如,振荡积分是任何物理散射过程的一个众所周知的特征,沿着这里所建议的路线的进展可以大大减少目前对它们的数值研究所需要的大量努力。另一方面,提案中关于超对称理论的问题反映了最近的进展,表明了三个看似不同的领域之间深刻而令人惊讶的对应关系-即超对称规范理论,孤子方程和黎曼曲面。这种通信的起源仍然是神秘的,它很可能是在最基本的层面上理解自然规律的持续尝试所必需的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Duong Phong其他文献

Duong Phong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Duong Phong', 18)}}的其他基金

Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
  • 批准号:
    2212148
  • 财政年份:
    2022
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
  • 批准号:
    2203273
  • 财政年份:
    2022
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Continuing Grant
Problems in Complex Analysis, Partial Differential Equations, and Mathematical Physics
复分析、偏微分方程和数学物理问题
  • 批准号:
    1855947
  • 财政年份:
    2019
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Problems in Complex Analysis and Complex Geometry
复杂分析和复杂几何问题
  • 批准号:
    1266033
  • 财政年份:
    2013
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Continuing Grant
Problems in complex analysis, complex geometry, and mathematical physics
复分析、复几何和数学物理中的问题
  • 批准号:
    0757372
  • 财政年份:
    2008
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Continuing Grant
Conference on Complex Analysis, Differential Geometry, and Partial Differential Equations; May 2-6, 2005; New York, NY
复分析、微分几何和偏微分方程会议;
  • 批准号:
    0456822
  • 财政年份:
    2005
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
2003-2004 Special Year in Geometric and Spectral Analysis; Montreal, Canada
2003-2004 几何和光谱分析特别年;
  • 批准号:
    0339017
  • 财政年份:
    2004
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Problems in Analysis at the Interface with Geometry and Physics
几何与物理交叉点的分析问题
  • 批准号:
    0245371
  • 财政年份:
    2003
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Oscillatory and Singular Integrals in Analysis, Geometry, and Physics
数学科学:分析、几何和物理中的振荡积分和奇异积分
  • 批准号:
    9505399
  • 财政年份:
    1995
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Singular Integrals and Fourier Integral Operators
数学科学:奇异积分和傅里叶积分算子
  • 批准号:
    9204196
  • 财政年份:
    1992
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Analysis of Partial Differential Equations in Moving Interface Problems
职业:移动界面问题中的偏微分方程分析
  • 批准号:
    1653161
  • 财政年份:
    2017
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Continuing Grant
At the interface between semiclassical analysis and numerical analysis of wave propagation problems
波传播问题的半经典分析和数值分析之间的接口
  • 批准号:
    EP/R005591/1
  • 财政年份:
    2017
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Fellowship
Some problems at the interface of harmonic analysis, number theory, and combinatorics
调和分析、数论和组合学接口的一些问题
  • 批准号:
    1600840
  • 财政年份:
    2016
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Continuing Grant
Problems on the interface of analysis, number theory and additive combinatorics
分析、数论和加性组合学的接口问题
  • 批准号:
    RGPIN-2014-06022
  • 财政年份:
    2015
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Discovery Grants Program - Individual
High performance numerical methods for moving interface problems and uncertainty analysis
用于移动界面问题和不确定性分析的高性能数值方法
  • 批准号:
    132923-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Ideas and Analysis for Interface and Fluid-Structure Interaction Problems and Applications
界面和流固耦合问题的新思路和分析及应用
  • 批准号:
    1522768
  • 财政年份:
    2015
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Problems at the Interface of Stochastics and Analysis
随机学与分析的交叉问题
  • 批准号:
    1407504
  • 财政年份:
    2014
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Continuing Grant
High performance numerical methods for moving interface problems and uncertainty analysis
用于移动界面问题和不确定性分析的高性能数值方法
  • 批准号:
    132923-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Discovery Grants Program - Individual
Problems on the interface of analysis, number theory and additive combinatorics
分析、数论和加性组合学的接口问题
  • 批准号:
    RGPIN-2014-06022
  • 财政年份:
    2014
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of moving interface problems in fluid dynamics
流体动力学中的运动界面问题分析
  • 批准号:
    1301380
  • 财政年份:
    2013
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了