Problems in complex analysis, complex geometry, and mathematical physics
复分析、复几何和数学物理中的问题
基本信息
- 批准号:0757372
- 负责人:
- 金额:$ 71.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on a number of open problems about canonical metrics and stability in complex geometry, pluripotential theory and complex Monge-Ampere equations, Feynman rules in string theory, and integrable models related to gauge theories. These are fundamental problems in complex analysis and complex geometry that are also of great interest in algebraic geometry, partial differential equations, and mathematical physics. They are acknowledged to be difficult, but recent progress has revealed for them a very rich structure, as well as many unifying threads. The project builds upon previous research of the principal investigator, but it also branches out to explore relations with different concurrent lines of investigation. The principal investigator?s approaches to the various problems are tightly interwoven, so that progress on one could well lead to progress on others.Complex analysis and complex geometry are central fields in mathematics, whose role is essential in the very formulation and ultimate understanding of physical laws. Complex analytic methods are needed in every branch of both pure and applied mathematics. The geometric problems contemplated here either are rooted directly in attempts at understanding the laws of nature at their most fundamental level (as in the problems from string theory and gauge theories) or have strong analogies with basic equations from general relativity and other branches of science (as in the case of canonical metrics and Monge-Ampere equations). The proposed research will have an immediate beneficial effect on students and postdoctoral researchers at the principal investigator?s home institution. But it will also generate a lot of research problems and provide a fertile training ground for the many researchers in analysis and complex geometry nationwide. The principal investigator has actively encouraged junior people, irrespective of their affiliations, to participate in various components of this research. To this end, he plans to continue to disseminate the results of the research to a broad audience through lectures, survey papers, and graduate texts.
这个项目的重点是一些开放的问题,关于规范度量和稳定性在复杂的几何,多能理论和复杂的Monge-Ampere方程,费曼规则在弦理论,和可积模型相关的规范理论。这些是复分析和复几何中的基本问题,也是代数几何、偏微分方程和数学物理中的重要问题。它们被认为是困难的,但最近的进展为它们揭示了一个非常丰富的结构,以及许多统一的线程。该项目建立在主要研究者以前的研究基础上,但它也扩展到探索与不同并行调查线的关系。首席调查员?复分析和复几何是数学的中心领域,它们的作用对于物理定律的表述和最终理解是必不可少的。在纯数学和应用数学的每一个分支中都需要复分析方法。这里考虑的几何问题要么直接植根于试图在最基本的层次上理解自然定律(如弦论和规范理论的问题),要么与广义相对论和其他科学分支的基本方程有很强的相似性(如正则度规和蒙格-安培方程)。拟议的研究将有一个直接的有益影响,学生和博士后研究人员在主要研究者?s home institution.但它也将产生大量的研究问题,并为全国范围内的许多分析和复杂几何研究人员提供肥沃的训练场地。主要研究者积极鼓励年轻人,无论他们的从属关系,参与本研究的各个组成部分。为此,他计划继续通过讲座,调查论文和研究生教材向广大受众传播研究成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duong Phong其他文献
Duong Phong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duong Phong', 18)}}的其他基金
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2212148 - 财政年份:2022
- 资助金额:
$ 71.36万 - 项目类别:
Standard Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 71.36万 - 项目类别:
Continuing Grant
Problems in Complex Analysis, Partial Differential Equations, and Mathematical Physics
复分析、偏微分方程和数学物理问题
- 批准号:
1855947 - 财政年份:2019
- 资助金额:
$ 71.36万 - 项目类别:
Standard Grant
Problems in Complex Analysis and Complex Geometry
复杂分析和复杂几何问题
- 批准号:
1266033 - 财政年份:2013
- 资助金额:
$ 71.36万 - 项目类别:
Continuing Grant
Conference on Complex Analysis, Differential Geometry, and Partial Differential Equations; May 2-6, 2005; New York, NY
复分析、微分几何和偏微分方程会议;
- 批准号:
0456822 - 财政年份:2005
- 资助金额:
$ 71.36万 - 项目类别:
Standard Grant
2003-2004 Special Year in Geometric and Spectral Analysis; Montreal, Canada
2003-2004 几何和光谱分析特别年;
- 批准号:
0339017 - 财政年份:2004
- 资助金额:
$ 71.36万 - 项目类别:
Standard Grant
Problems in Analysis at the Interface with Geometry and Physics
几何与物理交叉点的分析问题
- 批准号:
0245371 - 财政年份:2003
- 资助金额:
$ 71.36万 - 项目类别:
Continuing Grant
Problems at the Interface of Analysis with Geometry and Physics
几何与物理分析的交叉问题
- 批准号:
9800783 - 财政年份:1998
- 资助金额:
$ 71.36万 - 项目类别:
Continuing Grant
Mathematical Sciences: Oscillatory and Singular Integrals in Analysis, Geometry, and Physics
数学科学:分析、几何和物理中的振荡积分和奇异积分
- 批准号:
9505399 - 财政年份:1995
- 资助金额:
$ 71.36万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Fourier Integral Operators
数学科学:奇异积分和傅里叶积分算子
- 批准号:
9204196 - 财政年份:1992
- 资助金额:
$ 71.36万 - 项目类别:
Continuing Grant
相似国自然基金
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用新型 pH 荧光探针研究 Syntaxin 12/13 介导的多种细胞器互作
- 批准号:92054103
- 批准年份:2020
- 资助金额:87.0 万元
- 项目类别:重大研究计划
S-棕榈酰化新型修饰在细胞自噬中的功能和机制研究
- 批准号:31970693
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
核孔复合体调控细胞核/叶绿体信号交流分子机制的研究
- 批准号:31970656
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
m6A甲基化酶ZCCHC4结合EIF3复合物调节翻译的机制研究
- 批准号:31971330
- 批准年份:2019
- 资助金额:62.0 万元
- 项目类别:面上项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
- 批准号:31971055
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
- 批准号:31872651
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
细胞不对称分裂时PAR-3/PAR-6复合物极性聚集的分子机制研究
- 批准号:31871394
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
- 批准号:
RGPIN-2021-03545 - 财政年份:2022
- 资助金额:
$ 71.36万 - 项目类别:
Discovery Grants Program - Individual
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
- 批准号:
RGPIN-2021-03545 - 财政年份:2021
- 资助金额:
$ 71.36万 - 项目类别:
Discovery Grants Program - Individual
Mathematical analysis of inverse problems and modelling for complex fluids and diffusion in heterogeneous media
逆问题的数学分析以及复杂流体和非均匀介质中扩散的建模
- 批准号:
20H00117 - 财政年份:2020
- 资助金额:
$ 71.36万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Problems in Complex Analysis, Partial Differential Equations, and Mathematical Physics
复分析、偏微分方程和数学物理问题
- 批准号:
1855947 - 财政年份:2019
- 资助金额:
$ 71.36万 - 项目类别:
Standard Grant
Complex Problems in Functional Data Analysis
函数数据分析中的复杂问题
- 批准号:
1914917 - 财政年份:2019
- 资助金额:
$ 71.36万 - 项目类别:
Continuing Grant
Clinicians, Computers, and a Common Language: Building Artificial Intelligence which Collaborates with Human Knowledge on Complex Problems in Medical Image Analysis and Surgical Data Science
临床医生、计算机和通用语言:构建人工智能,与人类知识协作解决医学图像分析和手术数据科学中的复杂问题
- 批准号:
516382-2018 - 财政年份:2019
- 资助金额:
$ 71.36万 - 项目类别:
Postdoctoral Fellowships
Clinicians, Computers, and a Common Language: Building Artificial Intelligence which Collaborates with Human Knowledge on Complex Problems in Medical Image Analysis and Surgical Data Science
临床医生、计算机和通用语言:构建人工智能,与人类知识协作解决医学图像分析和手术数据科学中的复杂问题
- 批准号:
516382-2018 - 财政年份:2018
- 资助金额:
$ 71.36万 - 项目类别:
Postdoctoral Fellowships
Development of high-dose time-resolved X-ray footprinting technologies to enable detailed structural and kinetics information to be obtained for challenging biological problems
开发高剂量时间分辨 X 射线足迹技术,以获得具有挑战性的生物问题的详细结构和动力学信息
- 批准号:
10446793 - 财政年份:2018
- 资助金额:
$ 71.36万 - 项目类别:
Development of high-dose time-resolved X-ray footprinting technologies to enable detailed structural and kinetics information to be obtained for challenging biological problems
开发高剂量时间分辨 X 射线足迹技术,以获得具有挑战性的生物问题的详细结构和动力学信息
- 批准号:
10630950 - 财政年份:2018
- 资助金额:
$ 71.36万 - 项目类别:
Clinicians, Computers, and a Common Language: Building Artificial Intelligence which Collaborates with Human Knowledge on Complex Problems in Medical Image Analysis and Surgical Data Science
临床医生、计算机和通用语言:构建人工智能,与人类知识协作解决医学图像分析和手术数据科学中的复杂问题
- 批准号:
516382-2018 - 财政年份:2017
- 资助金额:
$ 71.36万 - 项目类别:
Postdoctoral Fellowships