Problems in Analysis at the Interface with Geometry and Physics
几何与物理交叉点的分析问题
基本信息
- 批准号:0245371
- 负责人:
- 金额:$ 58.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Duong H. Phong, Columbia UniversityDMS-0245371ABSTRACTIt is proposed to address several problems at the interface of analysis with geometry and physics. A first problem is the development of stable analytic methods. Stable methods have emerged as essential for the study of singularities and oscillatory integrals, and for the basic problem of finding canonical metrics in differential geometry. Canonical metrics are expected to be equivalent to the notion of stability in the sense of geometric invariant theory, and the relation between this global notion and stable estimates is to be investigated. The second problem in the proposal is the development of Feynman rules for string scattering amplitudes. Feynman rules had been unavailable due to a geometric difficulty encountered for two-loops or higher, namely ``supermoduli". But the situation is now much more promising, thanks to the recent success of Eric D'Hoker and the PI in overcoming this difficulty in the simplest case of two-loops. The third problem in the proposal is the construction/identification of integrable structures in supersymmetric gauge and string theories. A basic tool is a new Hamiltonian approach to soliton equations developed by the PI in collaboration with Igor Krichever.These are core problems in theoretical physics and applied mathematics. The search of natural laws at their most fundamental level relies more and more on geometric principles and symmetry.The problems addressed in the present proposal - stability and canonical metrics, Feynman rules for string theory, soliton equations - are essential to the understanding of the two theories which have led research in both mathematics and theoretical physics for the last two decades, namely string theory and supersymmetry, together with their underlying geometric structures.
PI:Duong H. Phong,哥伦比亚大学DMS-0245371摘要提出了在几何和物理分析的界面上解决几个问题。第一个问题是稳定分析方法的发展。稳定的方法已经成为研究奇点和振荡积分,以及在微分几何中寻找规范度量的基本问题的关键。在几何不变理论的意义下,正则度量被期望等价于稳定性的概念,并且这个整体概念和稳定估计之间的关系有待于研究。建议中的第二个问题是发展弦散射振幅的费曼规则。费曼规则已经无法使用,因为遇到了几何困难的两个循环或更高,即“supermoduli”。但现在的情况是更有希望,由于最近成功的埃里克D 'Hoker和PI在克服这个困难,在最简单的情况下,两个循环。第三个问题是在超对称规范和弦理论中的可积结构的构造/识别。一个基本的工具是由PI与Igor Krichever合作开发的孤子方程的新Hamilton方法。这些是理论物理和应用数学的核心问题。在最基本的层次上寻找自然定律越来越依赖于几何原理和对称性。本提案中所解决的问题--稳定性和正则度规、弦论的费曼规则、孤子方程--对于理解在过去二十年中引领数学和理论物理研究的两个理论,即弦论和超对称性,是必不可少的。以及它们的基本几何结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duong Phong其他文献
Duong Phong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duong Phong', 18)}}的其他基金
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2212148 - 财政年份:2022
- 资助金额:
$ 58.87万 - 项目类别:
Standard Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 58.87万 - 项目类别:
Continuing Grant
Problems in Complex Analysis, Partial Differential Equations, and Mathematical Physics
复分析、偏微分方程和数学物理问题
- 批准号:
1855947 - 财政年份:2019
- 资助金额:
$ 58.87万 - 项目类别:
Standard Grant
Problems in Complex Analysis and Complex Geometry
复杂分析和复杂几何问题
- 批准号:
1266033 - 财政年份:2013
- 资助金额:
$ 58.87万 - 项目类别:
Continuing Grant
Problems in complex analysis, complex geometry, and mathematical physics
复分析、复几何和数学物理中的问题
- 批准号:
0757372 - 财政年份:2008
- 资助金额:
$ 58.87万 - 项目类别:
Continuing Grant
Conference on Complex Analysis, Differential Geometry, and Partial Differential Equations; May 2-6, 2005; New York, NY
复分析、微分几何和偏微分方程会议;
- 批准号:
0456822 - 财政年份:2005
- 资助金额:
$ 58.87万 - 项目类别:
Standard Grant
2003-2004 Special Year in Geometric and Spectral Analysis; Montreal, Canada
2003-2004 几何和光谱分析特别年;
- 批准号:
0339017 - 财政年份:2004
- 资助金额:
$ 58.87万 - 项目类别:
Standard Grant
Problems at the Interface of Analysis with Geometry and Physics
几何与物理分析的交叉问题
- 批准号:
9800783 - 财政年份:1998
- 资助金额:
$ 58.87万 - 项目类别:
Continuing Grant
Mathematical Sciences: Oscillatory and Singular Integrals in Analysis, Geometry, and Physics
数学科学:分析、几何和物理中的振荡积分和奇异积分
- 批准号:
9505399 - 财政年份:1995
- 资助金额:
$ 58.87万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Fourier Integral Operators
数学科学:奇异积分和傅里叶积分算子
- 批准号:
9204196 - 财政年份:1992
- 资助金额:
$ 58.87万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Analysis of Partial Differential Equations in Moving Interface Problems
职业:移动界面问题中的偏微分方程分析
- 批准号:
1653161 - 财政年份:2017
- 资助金额:
$ 58.87万 - 项目类别:
Continuing Grant
At the interface between semiclassical analysis and numerical analysis of wave propagation problems
波传播问题的半经典分析和数值分析之间的接口
- 批准号:
EP/R005591/1 - 财政年份:2017
- 资助金额:
$ 58.87万 - 项目类别:
Fellowship
Some problems at the interface of harmonic analysis, number theory, and combinatorics
调和分析、数论和组合学接口的一些问题
- 批准号:
1600840 - 财政年份:2016
- 资助金额:
$ 58.87万 - 项目类别:
Continuing Grant
Problems on the interface of analysis, number theory and additive combinatorics
分析、数论和加性组合学的接口问题
- 批准号:
RGPIN-2014-06022 - 财政年份:2015
- 资助金额:
$ 58.87万 - 项目类别:
Discovery Grants Program - Individual
High performance numerical methods for moving interface problems and uncertainty analysis
用于移动界面问题和不确定性分析的高性能数值方法
- 批准号:
132923-2011 - 财政年份:2015
- 资助金额:
$ 58.87万 - 项目类别:
Discovery Grants Program - Individual
Novel Ideas and Analysis for Interface and Fluid-Structure Interaction Problems and Applications
界面和流固耦合问题的新思路和分析及应用
- 批准号:
1522768 - 财政年份:2015
- 资助金额:
$ 58.87万 - 项目类别:
Standard Grant
Problems at the Interface of Stochastics and Analysis
随机学与分析的交叉问题
- 批准号:
1407504 - 财政年份:2014
- 资助金额:
$ 58.87万 - 项目类别:
Continuing Grant
High performance numerical methods for moving interface problems and uncertainty analysis
用于移动界面问题和不确定性分析的高性能数值方法
- 批准号:
132923-2011 - 财政年份:2014
- 资助金额:
$ 58.87万 - 项目类别:
Discovery Grants Program - Individual
Problems on the interface of analysis, number theory and additive combinatorics
分析、数论和加性组合学的接口问题
- 批准号:
RGPIN-2014-06022 - 财政年份:2014
- 资助金额:
$ 58.87万 - 项目类别:
Discovery Grants Program - Individual
Analysis of moving interface problems in fluid dynamics
流体动力学中的运动界面问题分析
- 批准号:
1301380 - 财政年份:2013
- 资助金额:
$ 58.87万 - 项目类别:
Standard Grant