Dynamical Models for the Interaction of Shocks with Dispersive Waves

冲击与色散波相互作用的动力学模型

基本信息

  • 批准号:
    9800797
  • 负责人:
  • 金额:
    $ 6.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-05-01 至 2001-04-30
  • 项目状态:
    已结题

项目摘要

In this work, the awardee will study models for the propagation of shock waves through a dispersive environment. These kinds of nonlinear, multi-mode interactions occur in a wide range of natural settings. One example arises when acoustic shocks from an underwater explosion propagate through the ocean and interact with internal dispersive waves or surface gravity waves. Another example arises in medical applications where acoustic waves and shocks are used in the destruction of undesirable objects such as kidney stones. A third arises when shock waves due to supernova explosions propagate through the interstellar plasma media. Despite the fact that these three physical settings are characterized by vastly different spatial scales and disparate physical mechanisms, there are important underlying mathematical similarities that unite them. Each is characterized by a multi-component amplitude equation governing a fast-moving hyperbolic wave (shock), interacting nonlinearly with a slowly-moving dispersive wave. This wide difference of timescales, characterized by the ratio of dispersive group velocity to shock speed, forms a small parameter which allows one to perform a multi-scale asymptotic analysis of the interaction process. The physical problem that the awardee will focus on is an example of a shock-dispersive wave system that arises when a supersonic object travels over the ocean surface. The shock wave associated with a sonic boom leaves a pressure `footprint' on the water's surface. The interest is in modelling the interaction of this shock with the nonlinear ocean surface waves in order to understand the penetration pressure below the ocean surface. It is suspected that the finite amplitude surface waves can act as focusing `acoustic lenses', which in principle can increase the noise level below the surface and create `hot spots' of more intense acoustic energy. Such problems are of interest to oceanographers and marine biologists who are concerned with the amount of noise propagating below the ocean surface and its influence on marine life. The model equations that will be studied are interesting in their own right and capture important physical mechanisms requiring new mathematical tools to analyse and understand them.
在这项工作中,获奖者将研究冲击波在弥散环境中传播的模型。这些非线性的、多模式的相互作用发生在广泛的自然环境中。当水下爆炸产生的声波冲击在海洋中传播并与内部色散波或表面重力波相互作用时,就会出现一个例子。另一个例子出现在医疗应用中,声波和冲击被用于破坏不需要的物体,如肾结石。第三种是由于超新星爆炸产生的冲击波在星际等离子体介质中传播时产生的。尽管这三种物理环境具有截然不同的空间尺度和不同的物理机制,但它们之间存在重要的潜在数学相似性。每一个特征都是一个多分量振幅方程,它控制着一个快速移动的双曲波(激波),与一个缓慢移动的色散波非线性相互作用。这种以色散群速度与激波速度之比为特征的时间尺度差异形成了一个小参数,使人们能够对相互作用过程进行多尺度渐近分析。获奖者将关注的物理问题是当超音速物体在海面上飞行时产生的冲击波色散波系统的一个例子。与音爆相关的冲击波会在水面上留下压力“足迹”。我们感兴趣的是模拟这种冲击与非线性海洋表面波的相互作用,以便了解海洋表面以下的穿透压力。人们怀疑,有限振幅的表面波可以作为聚焦的“声透镜”,原则上可以增加表面以下的噪音水平,并产生更强声能的“热点”。海洋学家和海洋生物学家对这些问题很感兴趣,他们关注在海洋表面以下传播的噪音量及其对海洋生物的影响。将要研究的模型方程本身就很有趣,并且捕获了需要新的数学工具来分析和理解它们的重要物理机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Newton其他文献

Beyond the Adjectives: Theorizing Educational Administration and Leadership
超越形容词:理论化教育管理和领导力
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gus Riveros;Paul Newton;S. Chitpin;R. Mueller;B. Stelmach;D. Wallin
  • 通讯作者:
    D. Wallin
Teaching Principals in Small Rural Schools: "My Cup Overfloweth".
乡村小学校的校长教学:“我的杯子溢出”。
Foetal arm prolapse and presumed maternal death in a wild hanuman langur (Presbytis entellus)
  • DOI:
    10.1007/bf02381038
  • 发表时间:
    1990-01-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Paul Newton
  • 通讯作者:
    Paul Newton
From Teachers to Teacher-Leaders: A Case Study.
从教师到教师领导者:案例研究。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gus Riveros;Paul Newton;J. D. Costa
  • 通讯作者:
    J. D. Costa
Group Knowledge and Group Knowledge Processes in School Board Decision Making
学校董事会决策中的群体知识和群体知识过程
  • DOI:
    10.2307/4126478
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Newton;L. Sackney
  • 通讯作者:
    L. Sackney

Paul Newton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Newton', 18)}}的其他基金

N-Vortex Problems: Modeling, Analysis, and Numerics
N 涡问题:建模、分析和数值
  • 批准号:
    0804629
  • 财政年份:
    2008
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
N-Vortex Problems: Analysis, Computation, and Data Acquisition
N 涡问题:分析、计算和数据采集
  • 批准号:
    0504308
  • 财政年份:
    2005
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
N-Vortex Problems
N 涡问题
  • 批准号:
    0203581
  • 财政年份:
    2002
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotics of Forced Amplitude Equations from Hydrodynamic Stability Theory
数学科学:流体动力稳定性理论中强迫振幅方程的渐近
  • 批准号:
    9400032
  • 财政年份:
    1994
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic and Computational Techniques for Amplitude Equations and Weak Turbulence Models
数学科学:振幅方程和弱湍流模型的渐近和计算技术
  • 批准号:
    9101371
  • 财政年份:
    1991
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mathematical Computation at the Center for Complex Systems Research
数学科学:复杂系统研究中心的数学计算
  • 批准号:
    9105813
  • 财政年份:
    1991
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mathematical Techniques for Unstable Physical Processes
数学科学:不稳定物理过程的数学技术
  • 批准号:
    9000593
  • 财政年份:
    1990
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Human models for accelerated robot learning and human-robot interaction
用于加速机器人学习和人机交互的人体模型
  • 批准号:
    DP240101458
  • 财政年份:
    2024
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Projects
Number theory and geometry behind quantum interaction models
量子相互作用模型背后的数论和几何
  • 批准号:
    24K16941
  • 财政年份:
    2024
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ruminating over host-parasite interaction models for fluke driven immune responses
反思侥幸驱动的免疫反应的宿主-寄生虫相互作用模型
  • 批准号:
    2878865
  • 财政年份:
    2023
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Studentship
CAREER: Statistical Models and Parallel-computing Methods for Analyzing Sparse and Large Single-cell Chromatin Interaction Datasets
职业:用于分析稀疏和大型单细胞染色质相互作用数据集的统计模型和并行计算方法
  • 批准号:
    2239350
  • 财政年份:
    2023
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Continuing Grant
Understanding effects of formulations on ingredient interaction with tissue culture models of the oral epithelium
了解配方对成分与口腔上皮组织培养模型相互作用的影响
  • 批准号:
    2747248
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Studentship
Models and Inferences for Heterogeneous Interaction Patterns in Social Networks
社交网络中异构交互模式的模型和推论
  • 批准号:
    2210735
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
CAREER: Integrating Interaction, Embodiment, and Emotion to Transform Language Models
职业:整合交互、体现和情感来转变语言模型
  • 批准号:
    2140642
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Continuing Grant
CRII: CHS: RUI: Computational models of humans for studying and improving Human-AI interaction
CRII:CHS:RUI:用于研究和改善人机交互的人类计算模型
  • 批准号:
    2218226
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
The interaction of cosmic fullerenes with their environment:confronting models with observations
宇宙富勒烯与其环境的相互作用:模型与观测结果的对比
  • 批准号:
    RGPIN-2021-04197
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Microfabricated bioactive hydrogel platform as in vitro models to understand the mechanobiology of cell-matrix interaction in human tissue
微制造的生物活性水凝胶平台作为体外模型来了解人体组织中细胞-基质相互作用的力学生物学
  • 批准号:
    RGPIN-2021-03200
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了