Mathematical Sciences: Asymptotics of Forced Amplitude Equations from Hydrodynamic Stability Theory

数学科学:流体动力稳定性理论中强迫振幅方程的渐近

基本信息

  • 批准号:
    9400032
  • 负责人:
  • 金额:
    $ 8.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-06-01 至 1997-05-31
  • 项目状态:
    已结题

项目摘要

9400032 Newton The project focuses on the development of multi-scale singular perturbation techniques and nonlinear WKB methods to study the interaction of high frequency oscillations with nonlinear dispersive waves. A particular emphasis will be placed on rapidly forced amplitude equations arising in hydrodynamic stability theory. A general goal will be to construct explicit approximate solutions showing interactions of high and low frequency waves in the form of asymptotic expansions. Specifically, we will study a rapidly forced Ginzburg-Landau model of relevance to transition to turbulence problems, and the Zakharov system, a hyperbolic- dispersive system modeling the interaction of fast acoustic waves with a dispersive plasma. A main goal of the work described in the proposal is to understand how higher order terms in an amplitude equation hierarchy can affect lower order dynamical wave interactions. In general, the higher order terms can feed high frequency oscillations into the lower order system creating important long time effects akin to the secular behavior well known in the context of celestial mechanics. The methods to be developed will give a useful way of tracking the influence of externally generated high frequency oscillations on evolving nonlinear dispersive waves.
9400032牛顿,该项目的重点是发展多尺度奇异摄动技术和非线性WKB方法来研究高频振荡与非线性色散波的相互作用。将特别强调在流体动力稳定性理论中产生的快速强迫振幅方程。一个总的目标将是以渐近展开的形式构造显示高频波和低频波相互作用的显式近似解。具体地说,我们将研究与过渡到湍流问题相关的快速强迫Ginzburg-Landau模型,以及Zakharov系统,这是一个模拟快速声波与色散等离子体相互作用的双曲-色散系统。该提案中描述的工作的一个主要目标是了解振幅方程组中的高阶项如何影响低阶动力波相互作用。一般而言,高阶项可以将高频振荡送入低阶系统,产生重要的长期效应,类似于天体力学中众所周知的长期行为。所发展的方法将为跟踪外部产生的高频振荡对演化的非线性色散波的影响提供一种有用的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Newton其他文献

Beyond the Adjectives: Theorizing Educational Administration and Leadership
超越形容词:理论化教育管理和领导力
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gus Riveros;Paul Newton;S. Chitpin;R. Mueller;B. Stelmach;D. Wallin
  • 通讯作者:
    D. Wallin
Teaching Principals in Small Rural Schools: "My Cup Overfloweth".
乡村小学校的校长教学:“我的杯子溢出”。
Foetal arm prolapse and presumed maternal death in a wild hanuman langur (Presbytis entellus)
  • DOI:
    10.1007/bf02381038
  • 发表时间:
    1990-01-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Paul Newton
  • 通讯作者:
    Paul Newton
From Teachers to Teacher-Leaders: A Case Study.
从教师到教师领导者:案例研究。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gus Riveros;Paul Newton;J. D. Costa
  • 通讯作者:
    J. D. Costa
Group Knowledge and Group Knowledge Processes in School Board Decision Making
学校董事会决策中的群体知识和群体知识过程
  • DOI:
    10.2307/4126478
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Newton;L. Sackney
  • 通讯作者:
    L. Sackney

Paul Newton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Newton', 18)}}的其他基金

N-Vortex Problems: Modeling, Analysis, and Numerics
N 涡问题:建模、分析和数值
  • 批准号:
    0804629
  • 财政年份:
    2008
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
N-Vortex Problems: Analysis, Computation, and Data Acquisition
N 涡问题:分析、计算和数据采集
  • 批准号:
    0504308
  • 财政年份:
    2005
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
N-Vortex Problems
N 涡问题
  • 批准号:
    0203581
  • 财政年份:
    2002
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Dynamical Models for the Interaction of Shocks with Dispersive Waves
冲击与色散波相互作用的动力学模型
  • 批准号:
    9800797
  • 财政年份:
    1998
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotic and Computational Techniques for Amplitude Equations and Weak Turbulence Models
数学科学:振幅方程和弱湍流模型的渐近和计算技术
  • 批准号:
    9101371
  • 财政年份:
    1991
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mathematical Computation at the Center for Complex Systems Research
数学科学:复杂系统研究中心的数学计算
  • 批准号:
    9105813
  • 财政年份:
    1991
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mathematical Techniques for Unstable Physical Processes
数学科学:不稳定物理过程的数学技术
  • 批准号:
    9000593
  • 财政年份:
    1990
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSF/CBMS Regional Conference in the Mathematical Sciences - New Perspectives for Boundary Value Problems and Their Asymptotics; May 16-20, 2005; Edinburg, TX
NSF/CBMS 数学科学区域会议 - 边值问题及其渐近问题的新视角;
  • 批准号:
    0433445
  • 财政年份:
    2005
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
  • 批准号:
    9796164
  • 财政年份:
    1997
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Random Matrices and Spectral Asymptotics
数学科学:随机矩阵和谱渐近学研究
  • 批准号:
    9424292
  • 财政年份:
    1995
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
  • 批准号:
    9500644
  • 财政年份:
    1995
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Spectral Asymptotics for Hyperbolic Surfaces and Real-Projective Structures
数学科学:双曲曲面和实射影结构的谱渐近
  • 批准号:
    9504176
  • 财政年份:
    1995
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Large Noise Asymptotics & Numerics of Degenerate Stochastic Differential Systems
数学科学:大噪声渐近论
  • 批准号:
    9404586
  • 财政年份:
    1994
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotics for the Spectra of Long-Memory Processes
数学科学:长记忆过程谱的渐进
  • 批准号:
    9403874
  • 财政年份:
    1994
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Integrable Equations: Complex Geometric Phases and Geometric Asymptotics
数学科学:非线性可积方程:复杂几何相位和几何渐近
  • 批准号:
    9403861
  • 财政年份:
    1994
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Statistical Inferences, Decision Theory, and Asymptotics of Eigenvalues and Eigenprojections
数学科学:统计推论、决策论以及特征值和特征投影的渐近
  • 批准号:
    9300973
  • 财政年份:
    1993
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Spectral Asymptotics of Toeplitz and Pseudodifferential Operators
数学科学:Toeplitz 和伪微分算子的谱渐进
  • 批准号:
    9216103
  • 财政年份:
    1992
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了