Web Personalization and Mining Using Robust Fuzzy Clustering Methods
使用鲁棒模糊聚类方法进行 Web 个性化和挖掘
基本信息
- 批准号:9800899
- 负责人:
- 金额:$ 20.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-01 至 2002-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is an inter-institutional collaborative project carried out by Anupam Joshi at the University of Maryland, Baltimore County and Raghu Krishnapuram at the Colorado School of Mines. The goal of this research is to develop scalable robust techniques to model noisy data sets containing an unknown number of overlapping categories, and apply them to create a software tool for web personalization and mining. Personalization has two components: (1) tailoring the content delivered to the user from a web site; and (2) exploring the available web pages and categorizing them. The approach consists of developing new practical clustering algorithms by combining fuzzy methods, robust statistics, with Monte Carlo/bootstrapping techniques to model an unknown number of overlapping sets in the presence outliers. Since many web objects such as URLs, IP addresses, and web pages cannot be represented by numerical features, new techniques to handle web objects with linguistic and textual features, as well as to categorize or cluster them by using suitable similarity measures between such objects, are being explored. A software tool for web personalization and mining, which incorporates the algorithms developed into a software architecture, is being created and validated. The results of this project will generate new theoretical results and efficient algorithms for simultaneously estimating the parameters of an unknown number of overlapping categories from noisy data sets, as well as a web personalization and mining tool that will be made available on the web. Thus, this project is expected to have a significant impact on the way documents are searched for and delivered. It will directly influence the usefulness and spread of the Internet and WWW, and in general, will contribute to the digital library technology. http://www.cecs.missouri.edu/~joshi/web-mine/
这是一个机构间合作项目,由巴尔的摩县马里兰州大学的Anupam Joshi和科罗拉多矿业学院的Raghu Krishnapuram开展。本研究的目标是开发可扩展的鲁棒技术来建模包含未知数量的重叠类别的噪声数据集,并将其应用于创建用于Web个性化和挖掘的软件工具。个性化有两个组成部分:(1)定制从网站传递给用户的内容;(2)探索可用的网页并对其进行分类。该方法包括开发新的实用的聚类算法相结合的模糊方法,强大的统计,与蒙特卡洛/自举技术建模未知数量的重叠集的存在离群值。由于许多Web对象,如URL,IP地址和网页不能表示的数字特征,新的技术来处理Web对象的语言和文本特征,以及分类或集群,通过使用合适的相似性措施,这些对象之间,正在探索。正在创建和验证一个用于网络个性化和挖掘的软件工具,该工具将所开发的算法纳入软件架构。该项目的结果将产生新的理论结果和有效的算法,用于从嘈杂的数据集同时估计未知数量的重叠类别的参数,以及将在网络上提供的网络个性化和挖掘工具。因此,预计该项目将对文件的搜索和提供方式产生重大影响。它将直接影响到Internet和WWW的使用和传播,并在总体上有助于数字图书馆技术的发展。 http://www.cecs.missouri.edu/~joshi/web-mine/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anupam Joshi其他文献
India’s forests – Stepping stone or millstone for the poor?
- DOI:
10.1016/j.worlddev.2018.11.007 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:
- 作者:
Richard Damania;Anupam Joshi;Jason Russ - 通讯作者:
Jason Russ
1 Data and Services for Mobile Computing
1 移动计算的数据和服务
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
M. Singh;Sasikanth Avancha;F. Perich;Anupam Joshi - 通讯作者:
Anupam Joshi
Enforcing security in semantics driven policy based networks
- DOI:
10.1016/j.csi.2010.03.010 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Palanivel Kodeswaran;Sethuram Balaji Kodeswaran;Anupam Joshi;Tim Finin - 通讯作者:
Tim Finin
A Secure Infrastructure for Service Discovery and Access in Pervasive Computing
- DOI:
10.1023/a:1022224912300 - 发表时间:
2003-04-01 - 期刊:
- 影响因子:2.000
- 作者:
Jeffrey Undercoffer;Filip Perich;Andrej Cedilnik;Lalana Kagal;Anupam Joshi - 通讯作者:
Anupam Joshi
Querying in Packs: Trustworthy Data Management in Ad Hoc Networks
- DOI:
10.1007/s10776-006-0040-3 - 发表时间:
2006-06-09 - 期刊:
- 影响因子:1.200
- 作者:
Anand Patwardhan;Filip Perich;Anupam Joshi;Tim Finin;Yelena Yesha - 通讯作者:
Yelena Yesha
Anupam Joshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anupam Joshi', 18)}}的其他基金
JST: SCC-PG: Bridging the Digital Gap and Identifying Cross-Cultural Pathways for Adoption of IoT Technologies to Support Super-Aging Societies in the U.S. and Japan
JST:SCC-PG:弥合数字鸿沟并确定采用物联网技术支持美国和日本超级老龄化社会的跨文化途径
- 批准号:
1952032 - 财政年份:2020
- 资助金额:
$ 20.42万 - 项目类别:
Standard Grant
EAGER:X+CS: CS Pathways for Non CS majors
EAGER:X CS:非 CS 专业的 CS 衔接课程
- 批准号:
1841563 - 财政年份:2018
- 资助金额:
$ 20.42万 - 项目类别:
Standard Grant
EAGER: T2K: From Tables to Knowledge
EAGER:T2K:从表格到知识
- 批准号:
1250627 - 财政年份:2012
- 资助金额:
$ 20.42万 - 项目类别:
Standard Grant
Collaborative Proposal: ITR-SemDIS: Discovering Complex Relationships in the Semantic Web
合作提案:ITR-SemDIS:发现语义网中的复杂关系
- 批准号:
0325172 - 财政年份:2003
- 资助金额:
$ 20.42万 - 项目类别:
Continuing Grant
Profile Driven Architecture for Data Management in Pervasive Environments
用于普遍环境中数据管理的配置文件驱动架构
- 批准号:
0209001 - 财政年份:2002
- 资助金额:
$ 20.42万 - 项目类别:
Continuing Grant
NGS: Agent Oriented Approaches to a Ubiquitous Grid
NGS:面向代理的无处不在网格方法
- 批准号:
0203958 - 财政年份:2002
- 资助金额:
$ 20.42万 - 项目类别:
Continuing Grant
Dynamic Negotiation Agents in Mobile Computing
移动计算中的动态协商代理
- 批准号:
0070802 - 财政年份:2000
- 资助金额:
$ 20.42万 - 项目类别:
Continuing Grant
CAREER: MultiAgent Systems to Support Mobile Information Access
职业:支持移动信息访问的多代理系统
- 批准号:
9875433 - 财政年份:1999
- 资助金额:
$ 20.42万 - 项目类别:
Continuing Grant
Web Personalization and Mining Using Robust Fuzzy Clustering Methods
使用鲁棒模糊聚类方法进行 Web 个性化和挖掘
- 批准号:
9801711 - 财政年份:1998
- 资助金额:
$ 20.42万 - 项目类别:
Continuing Grant
相似海外基金
Research on personalization of spoken-dialogue-based computer-assisted-language-learning system
基于口语对话的计算机辅助语言学习系统的个性化研究
- 批准号:
23K24962 - 财政年份:2024
- 资助金额:
$ 20.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Enhancing Diversity and Personalization in Human-AI Collaborative Writing
职业:增强人机协作写作的多样性和个性化
- 批准号:
2340345 - 财政年份:2024
- 资助金额:
$ 20.42万 - 项目类别:
Continuing Grant
CRII: III: Towards Improving the Handling of Heterogeneity and Personalization in Federated Learning
CRII:III:改进联邦学习中异构性和个性化的处理
- 批准号:
2246067 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
- 批准号:
2232694 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
- 批准号:
2232692 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
- 批准号:
2232693 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别:
Standard Grant
A facial expression-based personalization engine (FPE) for monitoring and modulating real-time effective engagement in cognitive training in older adults at risk for AD/ADRD
基于面部表情的个性化引擎 (FPE),用于监控和调节有 AD/ADRD 风险的老年人实时有效地参与认知训练
- 批准号:
10766409 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别:
Innovations in Personalizing Treatment for Eating Disorders Using Idiographic Methods and the Impact of Personalization on Psychological, Physical, and Sociodemographic Outcomes
使用具体方法对饮食失调进行个性化治疗的创新以及个性化对心理、身体和社会人口学结果的影响
- 批准号:
10685796 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别:
SCH: Shallow and Deep Personalization for Hearing Aids
SCH:助听器的浅度和深度个性化
- 批准号:
2306331 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别:
Standard Grant
Personalization of graphical models using multi-omics data for subtype discovery and prognosis
使用多组学数据个性化图形模型以进行亚型发现和预后
- 批准号:
10743786 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别: