Collaborative Proposal: ITR-SemDIS: Discovering Complex Relationships in the Semantic Web

合作提案:ITR-SemDIS:发现语义网中的复杂关系

基本信息

  • 批准号:
    0325172
  • 负责人:
  • 金额:
    $ 45.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-10-15 至 2008-09-30
  • 项目状态:
    已结题

项目摘要

Research in search techniques was a critical component of the first generation of the Web, and has gone from academe to mainstream. A second generation "Semantic Web" is being built by adding semantic annotations that machines can understand and from which humans can benefit. Modeling, discovering and reasoning about complex relationships on the Semantic Web will enable this vision and transform the hunt for documents into a more automated analysis enabled by semantic technology. The beginnings of this shift from search to analysis can be observed in research and industry as users look beyond finding relevant documents based on keywords to finding actionable information leading to decision making and insights. Large scale semantic annotation of data (both domain-independent and domain-specific) is now possible because of an accumulation of advances in entity identification, automatic classification, taxonomy and ontology development, and metadata extraction. The next frontier, which fundamentally changes the way we acquire and use knowledge, is to automatically identify complex relationships between entities in this semantically annotated data. Instead of a search engine that returns documents containing terms of interest, there will be a system that returns actionable information (with the associated sources and supporting evidence) to a user or application. The user interacts with information universe through a hypothesis driven approach that combines search and inferencing, enabling more complex analysis and deeper insight. The research will focus on the design, prototyping and evaluation of a system, called SemDIS (Semantic Discovery) that supports indexing and querying of complex semantic relationships and is driven by notions of information trust and provenance and models of hypotheses and arguments under investigation. Such a capability greatly enhances the capacity of intelligence analysts to obtain (in time) information leading to a more secure homeland and world. Corresponding to the breadth and depth of the topics involved in the challenge undertaken, this is a collaborative project involving researchers at UGA's LSDIS lab and UMBC. SemDIS will have broader impacts beyond the education and training of graduate students, and the publication of research findings. Results from the research will be integrated with courses, both existing and new. Institutional mechanisms in place will seek participation of students from underrepresented groups. The work will also gain from several academic-industry collaborations of the investigators. There will be an opportunity to leverage commercial infrastructure and raw metadata provided by Semagix. The researchers will collaborate with industry, and the students will be encouraged to intern at collaborating industrial labs. Within a broader social context, emerging knowledge-centric technologies raise legitimate privacy and civil liberties concerns. Building upon past policy making experience, the investigators will comment on potential implications of their scientific progress. More information can be found at http://http://lsdis.cs.uga.edu/SemDIS/ and at http://www.cs.umbc.edu/SemDIS/
搜索技术的研究是第一代网络的关键组成部分,已经从学术界走向主流。第二代“语义网”正在通过添加语义注释来构建,机器可以理解,人类也可以从中受益。对语义Web上复杂关系的建模、发现和推理将实现这一愿景,并将文档搜索转变为语义技术支持的更自动化的分析。这种从搜索到分析的转变可以在研究和行业中观察到,因为用户不仅仅是基于关键字寻找相关文档,而是寻找可操作的信息,从而做出决策和见解。由于实体识别、自动分类、分类法和本体开发以及元数据提取方面的进步积累,现在可以对数据进行大规模的语义注释(包括与领域无关的和特定于领域的)。从根本上改变我们获取和使用知识的方式的下一个前沿是自动识别这些语义注释数据中实体之间的复杂关系。代替返回包含感兴趣的术语的文档的搜索引擎,将有一个向用户或应用程序返回可操作信息(以及相关的来源和支持证据)的系统。用户通过结合搜索和推理的假设驱动方法与信息世界交互,从而实现更复杂的分析和更深入的洞察。该研究将侧重于一个名为SemDIS(语义发现)的系统的设计、原型和评估,该系统支持对复杂语义关系进行索引和查询,并由信息信任和来源的概念以及正在调查的假设和论证模型驱动。这种能力大大提高了情报分析人员获得(及时)信息的能力,从而使家园和世界更加安全。与所承担的挑战所涉及的主题的广度和深度相对应,这是一个涉及UGA LSDIS实验室和UMBC研究人员的合作项目。SemDIS将在研究生的教育和培训以及研究成果的发表之外产生更广泛的影响。研究结果将与现有课程和新课程相结合。现有的体制机制将寻求来自代表性不足群体的学生的参与。这项工作还将从研究人员的几项学术与工业合作中获益。将有机会利用Semagix提供的商业基础设施和原始元数据。研究人员将与工业界合作,学生将被鼓励在合作的工业实验室实习。在更广泛的社会背景下,新兴的以知识为中心的技术引起了人们对合法隐私和公民自由的关注。根据过去的政策制定经验,调查人员将对他们的科学进展的潜在影响发表评论。更多信息可在http://http://lsdis.cs.uga.edu/SemDIS/和http://www.cs.umbc.edu/SemDIS/找到

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anupam Joshi其他文献

India’s forests – Stepping stone or millstone for the poor?
  • DOI:
    10.1016/j.worlddev.2018.11.007
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Damania;Anupam Joshi;Jason Russ
  • 通讯作者:
    Jason Russ
1 Data and Services for Mobile Computing
1 移动计算的数据和服务
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Singh;Sasikanth Avancha;F. Perich;Anupam Joshi
  • 通讯作者:
    Anupam Joshi
Enforcing security in semantics driven policy based networks
  • DOI:
    10.1016/j.csi.2010.03.010
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Palanivel Kodeswaran;Sethuram Balaji Kodeswaran;Anupam Joshi;Tim Finin
  • 通讯作者:
    Tim Finin
A Secure Infrastructure for Service Discovery and Access in Pervasive Computing
  • DOI:
    10.1023/a:1022224912300
  • 发表时间:
    2003-04-01
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Jeffrey Undercoffer;Filip Perich;Andrej Cedilnik;Lalana Kagal;Anupam Joshi
  • 通讯作者:
    Anupam Joshi
Querying in Packs: Trustworthy Data Management in Ad Hoc Networks

Anupam Joshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anupam Joshi', 18)}}的其他基金

JST: SCC-PG: Bridging the Digital Gap and Identifying Cross-Cultural Pathways for Adoption of IoT Technologies to Support Super-Aging Societies in the U.S. and Japan
JST:SCC-PG:弥合数字鸿沟并确定采用物联网技术支持美国和日本超级老龄化社会的跨文化途径
  • 批准号:
    1952032
  • 财政年份:
    2020
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Standard Grant
EAGER:X+CS: CS Pathways for Non CS majors
EAGER:X CS:非 CS 专业的 CS 衔接课程
  • 批准号:
    1841563
  • 财政年份:
    2018
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Standard Grant
EAGER: T2K: From Tables to Knowledge
EAGER:T2K:从表格到知识
  • 批准号:
    1250627
  • 财政年份:
    2012
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Standard Grant
Profile Driven Architecture for Data Management in Pervasive Environments
用于普遍环境中数据管理的配置文件驱动架构
  • 批准号:
    0209001
  • 财政年份:
    2002
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
WORKSHOP: IDM 02 Workshop
研讨会:IDM 02 研讨会
  • 批准号:
    0218377
  • 财政年份:
    2002
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Standard Grant
NGS: Agent Oriented Approaches to a Ubiquitous Grid
NGS:面向代理的无处不在网格方法
  • 批准号:
    0203958
  • 财政年份:
    2002
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
Dynamic Negotiation Agents in Mobile Computing
移动计算中的动态协商代理
  • 批准号:
    0070802
  • 财政年份:
    2000
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
CAREER: MultiAgent Systems to Support Mobile Information Access
职业:支持移动信息访问的多代理系统
  • 批准号:
    9875433
  • 财政年份:
    1999
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
Web Personalization and Mining Using Robust Fuzzy Clustering Methods
使用鲁棒模糊聚类方法进行 Web 个性化和挖掘
  • 批准号:
    9800899
  • 财政年份:
    1998
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
Web Personalization and Mining Using Robust Fuzzy Clustering Methods
使用鲁棒模糊聚类方法进行 Web 个性化和挖掘
  • 批准号:
    9801711
  • 财政年份:
    1998
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Proposal: ITR-SemDIS: Discovering Complex Relationships in the Semantic Web
合作提案:ITR-SemDIS:发现语义网中的复杂关系
  • 批准号:
    0714441
  • 财政年份:
    2007
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
ITR Collaborative Proposal: Building Biologically Based Immune System Simulations for Education and Training
ITR 合作提案:为教育和培训构建基于生物学的免疫系统模拟
  • 批准号:
    0427827
  • 财政年份:
    2004
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
ITR Collaborative Proposal: Aurora - Enabling Stream-Based Monitoring Applications
ITR 协作提案:Aurora - 启用基于流的监控应用程序
  • 批准号:
    0325703
  • 财政年份:
    2003
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
ITR Collaborative Proposal: Aurora - Enabling Stream-Based Monitoring Applications
ITR 协作提案:Aurora - 启用基于流的监控应用程序
  • 批准号:
    0325838
  • 财政年份:
    2003
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: ITR-SemDIS: Discovering Complex Relationships in the Semantic Web
合作提案:ITR-SemDIS:发现语义网中的复杂关系
  • 批准号:
    0325464
  • 财政年份:
    2003
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
ITR Collaborative Proposal: Aurora - Enabling Stream-Based Monitoring Applications
ITR 协作提案:Aurora - 启用基于流的监控应用程序
  • 批准号:
    0325525
  • 财政年份:
    2003
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: ITR/AP: Modular Ocean Data Assimilation
合作提案:ITR/AP:模块化海洋数据同化
  • 批准号:
    0121506
  • 财政年份:
    2002
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
ITR Collaborative Proposal: Subgroup Fault Lines in Distributed International Teams: The Impact on Cross-National Learning and Team Effectiveness
ITR 协作提案:分布式国际团队中的子群体断层线:对跨国学习和团队效率的影响
  • 批准号:
    0219754
  • 财政年份:
    2002
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Standard Grant
ITR/AP(Geo): Collaborative Proposal for First Generation Model and Data Assimilation System to Reduce Volcanic Hazards
ITR/AP(Geo):减少火山灾害的第一代模型和数据同化系统的合作提案
  • 批准号:
    0112694
  • 财政年份:
    2001
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Standard Grant
Collaborative Proposal-ITR/SY: Molecular Computation with Automated Microfluidic Sensors (MCAMS)
合作提案-ITR/SY:使用自动微流控传感器(MCAMS)进行分子计算
  • 批准号:
    0121405
  • 财政年份:
    2001
  • 资助金额:
    $ 45.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了