Motion of Interface Between Two Fluids
两种流体之间的界面运动
基本信息
- 批准号:9801094
- 负责人:
- 金额:$ 6.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2000-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-9801094 Principal Investigator: Sijue Wu Abstract: Wu will study the long time behavior of water waves, as well as the motion of a general two-layered fluid flow. To understand the long time behavior of a water wave, Wu would like to determine whether the free surface of such a wave remains non-self-intersecting and whether solutions of water wave problems exist for all time, given that the initial free surface of the water wave is a small perturbation of still water. To be more precise, she would like to characterize those initial free surfaces that guarantee the non-self-intersection of the free surface of a water wave for all time. She also wants to study the blow-up mechanism for those solutions of the water wave problem that fail to exist for all time. The methods used to tackle these problems arise from harmonic analysis and the theory of partial differential equations. They include: decay estimates, maximal principle arguments, and the construction of a self-similar solution to the problem. To understand the motion of the interface between any two superposed fluids, Wu intends to study such fundamental questions as the existence of solutions to the equation governing the motion and the singularity profiles of solutions. To achieve this goal, she hopes to adapt the methods in her earlier work on water waves to derive a quasilinear equation equivalent to the equation that describes the motion of the interface. The reason for this approach is that the equation which models the motion of a two-fluid interface is highly nonlinear. In general, one has a better understanding of quasilinear equations than of fully nonlinear equations. The proposed research is a continuation of the work started by Nalimov, Yosihara and Craig and later advanced by the principal investigator on the existence and uniqueness of solutions of water wave problems and the work of Sulem, Dochun and Robert, Caflisch and Orellana, and Ebin on the well-posedness of vortex sheet motion. Fluid waves, in numerous guises, are present in some of the most familiar experiences of daily life, from the jarring impact of loud noises on our eardrums to the soothing ebb and flow of surf at a beach. The rich variety of phenomena associated with wave motion have provided generations of physicists and mathematicians with an important and challenging research subject. The general problem of motion of the free interface of two superposed fluids has applications to a wide variety of concrete physical problems. It has been used to understand the mixing of fluids, the separation of boundary layers, the generation of sounds, and coherent structures in models of turbulence. The long term objective of the proposed work is to understand wave-breaking in surface waves and the singularity mechanism in vortex sheets, both topics that have significant ramifications for physics and engineering.
提案:DMS-9801094主要研究者:吴思爵 翻译后摘要:吴将研究水波的长时间行为,以及一般的两层流体流动的运动。为了理解水波的长期行为,吴想确定这样的波的自由表面是否保持非自相交,以及水波问题的解是否一直存在,假定水波的初始自由表面是静水的小扰动。更准确地说,她想表征那些初始的自由表面,保证所有时间的水波的自由表面的非自交。她还想研究水波问题的解的爆破机制,这些解不可能永远存在。用来解决这些问题的方法来自调和分析和偏微分方程理论。它们包括:衰减估计,最大原理参数,以及问题的自相似解决方案的建设。为了理解任何两个叠加流体之间的界面的运动,吴打算研究这样的基本问题,如运动方程的解的存在性和解的奇异性。为了实现这一目标,她希望在她早期的水波工作中采用这种方法来推导出一个与描述界面运动的方程等价的准线性方程。采用这种方法的原因是模拟两流体界面运动的方程是高度非线性的。一般来说,人们对拟线性方程的理解要比对完全非线性方程的理解好。拟议的研究是一个延续的工作开始由Nalimov,Yosihara和克雷格和后来先进的首席研究员的存在性和唯一性的解决方案的水波问题和工作的Sulem,Dochun和罗伯特,Caflisch和Orellana,和Ebin的涡面运动的适定性。 流体波以多种形式出现在我们日常生活中最熟悉的一些体验中,从巨大噪音对我们耳膜的刺耳冲击到海滩海浪的舒缓起伏。与波动相关的各种现象为几代物理学家和数学家提供了一个重要而具有挑战性的研究课题。两种叠加流体自由界面运动的一般问题可应用于各种具体的物理问题。它已被用来理解流体的混合,边界层的分离,声音的产生,以及湍流模型中的相干结构。拟议工作的长期目标是了解表面波中的破波和涡面中的奇异性机制,这两个主题对物理和工程都有重要的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sijue Wu其他文献
On the Motion of a Self-Gravitating Incompressible Fluid with Free Boundary
自由边界自引力不可压缩流体的运动
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
L. Bieri;Shuang Miao;S. Shahshahani;Sijue Wu - 通讯作者:
Sijue Wu
Wellposedness of the 2D full water wave equation in a regime that allows for non- $$C^1$$ interfaces
- DOI:
10.1007/s00222-019-00867-4 - 发表时间:
2019-03-23 - 期刊:
- 影响因子:3.600
- 作者:
Sijue Wu - 通讯作者:
Sijue Wu
Recent Progress in Mathematical Analysis of Vortex Sheets
涡流片数学分析最新进展
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Sijue Wu - 通讯作者:
Sijue Wu
Wellposedness and singularities of the water wave equations
水波方程的适定性和奇点
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Sijue Wu - 通讯作者:
Sijue Wu
Rigidity of acute angled corners for one phase Muskat interfaces
一相Muscat接口的锐角刚度
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.7
- 作者:
S. Agrawal;Neel Patel;Sijue Wu - 通讯作者:
Sijue Wu
Sijue Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sijue Wu', 18)}}的其他基金
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
- 批准号:
2153992 - 财政年份:2022
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Nonlinear Partial Equations and Applications
非线性偏方程及其应用
- 批准号:
1901739 - 财政年份:2019
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Mathematical Analysis of the Water Wave Motion
水波运动的数学分析
- 批准号:
1764112 - 财政年份:2018
- 资助金额:
$ 6.2万 - 项目类别:
Continuing Grant
Mathematical Analysis of the Water Wave Motion
水波运动的数学分析
- 批准号:
1101434 - 财政年份:2011
- 资助金额:
$ 6.2万 - 项目类别:
Continuing Grant
Mathematical Analysis of the Water Wave Problem
水波问题的数学分析
- 批准号:
0800194 - 财政年份:2008
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Mathematical Analysis of Vortex Sheet and Water Wave Motion
涡片与水波运动的数学分析
- 批准号:
0400643 - 财政年份:2004
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Mathematical Analysis of Vortex Dynamics and Waterwave Problem.
涡动力学和水波问题的数学分析。
- 批准号:
0433582 - 财政年份:2003
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Mathematical Analysis of Vortex Dynamics and Waterwave Problem.
涡动力学和水波问题的数学分析。
- 批准号:
0100204 - 财政年份:2001
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Motion of Interface Between Two Fluids
两种流体之间的界面运动
- 批准号:
0049023 - 财政年份:2000
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
相似海外基金
REU Site: SURFing the Interface between Chemistry and Biology
REU 网站:探索化学与生物学之间的界面
- 批准号:
2348203 - 财政年份:2024
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
REU site: Research at the interface between engineering and medicine (ENGMED)
REU 网站:工程与医学之间的交叉研究 (ENGMED)
- 批准号:
2349731 - 财政年份:2024
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
EAGER: Collaborative K-12 Outreach at the Interface between Biology and Imaging Science
EAGER:生物学和影像科学交叉领域的 K-12 协作推广
- 批准号:
2333466 - 财政年份:2024
- 资助金额:
$ 6.2万 - 项目类别:
Continuing Grant
A prototype interface between neutral-atom quantum processors and superconducting circuits
中性原子量子处理器和超导电路之间的原型接口
- 批准号:
EP/Y022688/1 - 财政年份:2024
- 资助金额:
$ 6.2万 - 项目类别:
Research Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
- 批准号:
EP/W035839/2 - 财政年份:2024
- 资助金额:
$ 6.2万 - 项目类别:
Research Grant
An Ag-Tech interface using hyperconnectivity between record-keeping / data systems and ML to reduce the huge admin burden facing farmers by up to 70%
An%20Ag-Tech%20接口%20使用%20超连接%20在%20记录保存%20/%20数据%20系统%20和%20ML%20到%20之间减少%20%20巨大%20管理员%20负担%20面向%20农民%20by%20up%20到
- 批准号:
10056112 - 财政年份:2023
- 资助金额:
$ 6.2万 - 项目类别:
Collaborative R&D
21ENGBIO A Universal and Controllable Interface between Synthetic Cells and Living Cells
21ENGBIO 合成细胞和活细胞之间的通用且可控的接口
- 批准号:
BB/W011468/1 - 财政年份:2023
- 资助金额:
$ 6.2万 - 项目类别:
Research Grant
CSR: Medium: Improving the Interface between Machine Learning and Software Systems
CSR:中:改进机器学习和软件系统之间的接口
- 批准号:
2313190 - 财政年份:2023
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Control in Multi-Scale Interface Coupling between Deformable Porous Media and Lumped Hydraulic Circuits
合作研究:可变形多孔介质与集总液压回路多尺度界面耦合分析与控制
- 批准号:
2327640 - 财政年份:2023
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Kynurenine-dependent redox signaling at the interface between innate and adaptive immunity
先天免疫和适应性免疫之间界面的犬尿氨酸依赖性氧化还原信号传导
- 批准号:
10749210 - 财政年份:2023
- 资助金额:
$ 6.2万 - 项目类别: