Mathematical Analysis of Vortex Sheet and Water Wave Motion
涡片与水波运动的数学分析
基本信息
- 批准号:0400643
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal DMS-0400643Title: Mathematical analysis of vortex sheet and water wave motionPI: Sijue Wu, University of MichiganABSTRACTThe vortex sheet problem serves as a prototype for the evolution ofvorticity in fluid flows. One can think for example of the wake of an airfoil as a typical problemof this type. This problem can be described by the incompressible Euler equations, wherethe initial vorticity is ideally a finite Radon measure supported on a curve. The issue is to determinethe evolution of this curve. A further assumption that the vortex sheet remains acurve at a later time leads to the Birkhoff-Rott equation. The PI's initial studyshows that a vortex sheetin general can not be a curve of reasonable regularity. On the other hand, Delort's result shows that vortex sheetfits as a weak solution of the Euler equation (for initially non-negative vorticity). However weaksolutions seem to be a class too big to describe thespecific nature of the vortex sheet evolution. The proposed research focuses on further pin point thenature of the vortex sheet evolution, through studying similarity spiral solutions, understanding the viscosity effects andthe evolution of vortex layers.Water wave is one of our most familiar experiences in daily life. A mathematical descriptionis the incompressible, irrotational Euler equation, defined in the moving water domain. Study of waterwave can be traced back to more than 150 years, in which the PI recently established the well-posedness of the problem locally in time, that is, the wave will evolutewithout breaking for a finite time period, fromany initially non-self intersecting wave surface. The proposed research focuses on the large time behavior:the global existence of smooth solutions, the wave breaking-- the mechanisms that cause thewave breaking and breaking profiles. The proposal is to initiate from existing theories on limit equations.Through comparisons of the full water wave equation with the limit equations, thePI aims at developing enoughmachinery and understandingthat lead to further research with greater generality.The proposed research will further our understanding of the nature phenomena such as the water wavemotion and wave breaking, the mixing of fluids, separation of boundary layers, generation ofsounds and coherent structuresin turbulence models. It will have a direct impact on the science and technology that influence our daily life.
题目:涡旋片与水波运动的数学分析题目:涡旋片问题与水波运动的数学分析题目:涡旋片问题与水波运动的数学分析题目:涡旋片问题是流体流动中涡度演化的一个原型。人们可以认为,例如尾流的翼型作为一个典型的问题,这种类型。这个问题可以用不可压缩欧拉方程来描述,其中初始涡度理想地是一个有限的氡测量,支持在曲线上。问题是确定这条曲线的演变。一个进一步的假设,旋涡片在稍后的时间保持曲线导致Birkhoff-Rott方程。PI的初步研究表明,涡旋片一般不可能是一条合理规则的曲线。另一方面,Delort的结果表明涡旋片适合作为欧拉方程的弱解(对于初始非负涡度)。然而,弱解似乎是一个太大的类别,无法描述涡旋片演化的具体性质。通过对相似螺旋解的研究、对黏度效应和涡层演化的理解,进一步研究涡旋片演化的针尖性质。水波是我们日常生活中最熟悉的经历之一。数学上的描述是不可压缩的、无旋转的欧拉方程,定义在运动的水域中。对水波的研究可以追溯到150多年前,其中PI最近确立了问题在局部时间上的适定性,即波浪从许多最初不自相交的波面在有限时间内不破裂地演变。提出的研究重点是大时间行为:光滑解的全局存在性,波浪破碎-导致波浪破碎的机制和破碎剖面。该建议是从现有的极限方程理论出发。通过对完整水波方程与极限方程的比较,pi旨在发展足够的机制和理解,从而进一步进行更广泛的研究。本文的研究将进一步加深我们对湍流模型中水波的波动和破波、流体的混合、边界层的分离、声音的产生和相干结构等自然现象的理解。它将对影响我们日常生活的科学技术产生直接影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sijue Wu其他文献
On the Motion of a Self-Gravitating Incompressible Fluid with Free Boundary
自由边界自引力不可压缩流体的运动
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
L. Bieri;Shuang Miao;S. Shahshahani;Sijue Wu - 通讯作者:
Sijue Wu
Wellposedness of the 2D full water wave equation in a regime that allows for non- $$C^1$$ interfaces
- DOI:
10.1007/s00222-019-00867-4 - 发表时间:
2019-03-23 - 期刊:
- 影响因子:3.600
- 作者:
Sijue Wu - 通讯作者:
Sijue Wu
Recent Progress in Mathematical Analysis of Vortex Sheets
涡流片数学分析最新进展
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Sijue Wu - 通讯作者:
Sijue Wu
Wellposedness and singularities of the water wave equations
水波方程的适定性和奇点
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Sijue Wu - 通讯作者:
Sijue Wu
Rigidity of acute angled corners for one phase Muskat interfaces
一相Muscat接口的锐角刚度
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.7
- 作者:
S. Agrawal;Neel Patel;Sijue Wu - 通讯作者:
Sijue Wu
Sijue Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sijue Wu', 18)}}的其他基金
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
- 批准号:
2153992 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Nonlinear Partial Equations and Applications
非线性偏方程及其应用
- 批准号:
1901739 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Analysis of the Water Wave Motion
水波运动的数学分析
- 批准号:
1764112 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Analysis of the Water Wave Motion
水波运动的数学分析
- 批准号:
1101434 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Analysis of the Water Wave Problem
水波问题的数学分析
- 批准号:
0800194 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Analysis of Vortex Dynamics and Waterwave Problem.
涡动力学和水波问题的数学分析。
- 批准号:
0433582 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Analysis of Vortex Dynamics and Waterwave Problem.
涡动力学和水波问题的数学分析。
- 批准号:
0100204 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Numerical simulation and vortex analysis of flow turbulence in viscoelastic fluids
粘弹性流体湍流数值模拟与涡流分析
- 批准号:
RGPIN-2022-04720 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Experimental analysis of vortex-ring dynamics in dense suspensions to enhance the power density and efficiency of redox flow batteries
稠密悬浮液中涡环动力学的实验分析,以提高氧化还原液流电池的功率密度和效率
- 批准号:
546606-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Experimental analysis of vortex-ring dynamics in dense suspensions to enhance the power density and efficiency of redox flow batteries
稠密悬浮液中涡环动力学的实验分析,以提高氧化还原液流电池的功率密度和效率
- 批准号:
546606-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Analysis on orbital stability of vortex rings
涡环轨道稳定性分析
- 批准号:
20K14347 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Experimental analysis of vortex-ring dynamics in dense suspensions to enhance the power density and efficiency of redox flow batteries
稠密悬浮液中涡环动力学的实验分析,以提高氧化还原液流电池的功率密度和效率
- 批准号:
546606-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Modelling the aeroelastic response of slender structures to vortex-induced vibrations for fatigue analysis
模拟细长结构对涡激振动的气动弹性响应以进行疲劳分析
- 批准号:
426322127 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Vibration Attenuation and Fatigue Analysis of the Large Flexible Articulated Boom under Wind Load and Vortex Shedding
大型柔性铰接臂在风载和涡流作用下的振动衰减和疲劳分析
- 批准号:
513864-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Engage Grants Program
Transition state analysis of a rapid and highly exothermic reaction using mixing enhancement by unsteady vortex generation
利用非稳态涡流产生的混合增强对快速高放热反应进行过渡态分析
- 批准号:
16K21161 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Autonomous adaptive sampling in PIV image analysis with extension to multi-dimensional PIV and application to vortex shedding behind a flapping wing
PIV 图像分析中的自主自适应采样,扩展到多维 PIV 以及扑翼后涡旋脱落的应用
- 批准号:
1812541 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Studentship
EAGER: Network Resilience Analysis of Complex Vortex Interactions
EAGER:复杂涡相互作用的网络弹性分析
- 批准号:
1632003 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant