Nonlinear Partial Equations and Applications
非线性偏方程及其应用
基本信息
- 批准号:1901739
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides funding for US participation in the conference "Nonlinear Partial Differential Equations and Applications" that will be held at the University of Michigan - Ann Arbor on July 9-12, 2019. The conference focuses on recent developments in Analysis, especially in the topics of hyperbolic conservation laws, mathematical general relativity, compressible and incompressible fluids, boundary dispersive phenomena, fluid dynamics and kinetic theory. A number of distinguished mathematicians have agreed to attend and speak at this conference. This award gives early career researchers, members of underrepresented groups, researchers not funded by NSF an opportunity to attend and participate in this conference. The organizing committee will strive to make this funding opportunity known to target groups through a number of different activities. More information will be made available at: https://mcaim.math.lsa.umich.edu/events/pde-conference/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为美国参加将于2019年7月9-12日在密歇根大学安娜堡分校举行的《非线性偏微分方程及其应用》会议提供资金。会议的重点是分析的最新进展,特别是在双曲守恒定律、数学广义相对论、可压缩和不可压缩流体、边界弥散现象、流体动力学和动力学理论等主题上。许多杰出的数学家已同意出席这次会议并在会上发言。这一奖项为早期职业研究人员、代表性不足群体的成员、不受NSF资助的研究人员提供了出席和参与这次会议的机会。组委会将通过一系列不同的活动,努力让目标群体了解这一筹资机会。更多信息将在:https://mcaim.math.lsa.umich.edu/events/pde-conference/This奖项反映了国家科学基金会的法定使命,并已被认为值得支持,通过使用基金会的智力优势和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sijue Wu其他文献
On the Motion of a Self-Gravitating Incompressible Fluid with Free Boundary
自由边界自引力不可压缩流体的运动
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
L. Bieri;Shuang Miao;S. Shahshahani;Sijue Wu - 通讯作者:
Sijue Wu
Wellposedness of the 2D full water wave equation in a regime that allows for non- $$C^1$$ interfaces
- DOI:
10.1007/s00222-019-00867-4 - 发表时间:
2019-03-23 - 期刊:
- 影响因子:3.600
- 作者:
Sijue Wu - 通讯作者:
Sijue Wu
Recent Progress in Mathematical Analysis of Vortex Sheets
涡流片数学分析最新进展
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Sijue Wu - 通讯作者:
Sijue Wu
Wellposedness and singularities of the water wave equations
水波方程的适定性和奇点
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Sijue Wu - 通讯作者:
Sijue Wu
Rigidity of acute angled corners for one phase Muskat interfaces
一相Muscat接口的锐角刚度
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.7
- 作者:
S. Agrawal;Neel Patel;Sijue Wu - 通讯作者:
Sijue Wu
Sijue Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sijue Wu', 18)}}的其他基金
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
- 批准号:
2153992 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Analysis of the Water Wave Motion
水波运动的数学分析
- 批准号:
1764112 - 财政年份:2018
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Analysis of the Water Wave Motion
水波运动的数学分析
- 批准号:
1101434 - 财政年份:2011
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Analysis of the Water Wave Problem
水波问题的数学分析
- 批准号:
0800194 - 财政年份:2008
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Analysis of Vortex Sheet and Water Wave Motion
涡片与水波运动的数学分析
- 批准号:
0400643 - 财政年份:2004
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Analysis of Vortex Dynamics and Waterwave Problem.
涡动力学和水波问题的数学分析。
- 批准号:
0433582 - 财政年份:2003
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Analysis of Vortex Dynamics and Waterwave Problem.
涡动力学和水波问题的数学分析。
- 批准号:
0100204 - 财政年份:2001
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant