Mathematical Analysis of Vortex Dynamics and Waterwave Problem.
涡动力学和水波问题的数学分析。
基本信息
- 批准号:0100204
- 负责人:
- 金额:$ 8.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-06-01 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI proposes to study problems in three subjects of fluid dynamics: the motion of the interface of general two layered flow, the boundary layer problem, and the motion of water wave. The motion of the interface of general two layered fluid flow includes vortex sheet motion as a special case. In a recent work, the PI shows that arbitrarily specifying independent position and velocity data generally will yield no Sobolev class vortex sheet for any positive time. Some crucial assumptions in this work are: the fluids are inviscid, there is no surface tension, and the interface remains a regular surface at positive time. A problem of interest is therefore a well-posed model for the vortex sheet motion. The PI proposes to reintroduce viscosity into the fluids, and to understand the effect of the viscosity near the interface. This leads to the study of the zero viscosity limit of two layered viscous fluids. A related problem of both mathematical and practical importance is the boundary layer problem. The question is to find the zero viscosity limit of the incompressible Navier-Stokes flow in a domain with a fixed nonempty boundary. It is well-known that the difficulty is in the boundary layer, within which the normal velocity gradient generally becomes very large. The PI's approach is different from the usual one, in the sense that the PI will assume no knowledge of the possible limit equations. The PI proposes to analyze directly the Navier-Stokes flow, and to obtain the qualitative behavior of the boundary part and the interior part of the solutions of Navier-Stokes equation. The method will be from harmonic analysis. It is expected that the techniques and results developed in solving the boundary layer problem will provide insight in finding a well-posed model for the vortex sheet motion.The PI proposes to continue her study in the water wave problem. Recently, the PI proved the existence and uniqueness of solutions locally in time for the Water wave problem. The proposed research concentrates on issues relating to the long time behavior of the water wave: the global existenceand uniqueness of solutions, the lifespan of the water wave before singularity,and the singularity profile of the solution. The method will be from harmonic analysis and Clifford analysis.The methods and techniques developed by the PI in solving the water wave problemhas found applications in the vortex sheet problem. Success in this project will enhance our understanding of the wave motion, of the mixing of fluids, separation of boundary layers, generation of soundsand coherent structures in turbulence models.
PI建议研究流体动力学的三个主题:一般两层流动的界面运动,边界层问题和水波运动。一般两层流体流动界面的运动包括特殊情况的涡面运动。在最近的工作中,PI表明,任意指定独立的位置和速度数据通常不会产生任何正时间的Sobolev类涡面。这项工作中的一些关键假设是:流体是无粘性的,没有表面张力,界面在正时间保持规则的表面。 因此,一个感兴趣的问题是涡面运动的适定模型。PI建议将粘度重新引入流体中,并了解界面附近粘度的影响。这导致了两层粘性流体的零粘度极限的研究。一个在数学和实际上都很重要的相关问题是边界层问题。问题是在一个固定的非空边界的区域中,找到不可压缩Navier-Stokes流的零粘性极限。众所周知,困难在于边界层,在边界层内法向速度梯度通常变得非常大。PI的方法与通常的方法不同,在这个意义上,PI将假设不知道可能的极限方程。PI提出直接分析Navier-Stokes流动,并获得Navier-Stokes方程解的边界部分和内部部分的定性行为。该方法将从谐波分析。预计在解决边界层问题中发展的技术和结果将为找到涡面运动的适定模型提供见解。PI建议继续她在水波问题中的研究。最近,PI证明了水波问题的局部时间解的存在性和唯一性。所提出的研究集中在与水波的长时间行为有关的问题上:解的全局存在性和唯一性,水波在奇异性之前的寿命,以及解的奇异性轮廓。该方法将从调和分析和Clifford分析中发展出来,PI在求解水波问题中所发展的方法和技巧在涡面问题中得到了应用。该项目的成功将提高我们对波动、流体混合、边界层分离、声音产生以及湍流模型中相干结构的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sijue Wu其他文献
On the Motion of a Self-Gravitating Incompressible Fluid with Free Boundary
自由边界自引力不可压缩流体的运动
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
L. Bieri;Shuang Miao;S. Shahshahani;Sijue Wu - 通讯作者:
Sijue Wu
Wellposedness of the 2D full water wave equation in a regime that allows for non- $$C^1$$ interfaces
- DOI:
10.1007/s00222-019-00867-4 - 发表时间:
2019-03-23 - 期刊:
- 影响因子:3.600
- 作者:
Sijue Wu - 通讯作者:
Sijue Wu
Recent Progress in Mathematical Analysis of Vortex Sheets
涡流片数学分析最新进展
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Sijue Wu - 通讯作者:
Sijue Wu
Wellposedness and singularities of the water wave equations
水波方程的适定性和奇点
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Sijue Wu - 通讯作者:
Sijue Wu
Rigidity of acute angled corners for one phase Muskat interfaces
一相Muscat接口的锐角刚度
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.7
- 作者:
S. Agrawal;Neel Patel;Sijue Wu - 通讯作者:
Sijue Wu
Sijue Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sijue Wu', 18)}}的其他基金
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
- 批准号:
2153992 - 财政年份:2022
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Nonlinear Partial Equations and Applications
非线性偏方程及其应用
- 批准号:
1901739 - 财政年份:2019
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Mathematical Analysis of the Water Wave Motion
水波运动的数学分析
- 批准号:
1764112 - 财政年份:2018
- 资助金额:
$ 8.1万 - 项目类别:
Continuing Grant
Mathematical Analysis of the Water Wave Motion
水波运动的数学分析
- 批准号:
1101434 - 财政年份:2011
- 资助金额:
$ 8.1万 - 项目类别:
Continuing Grant
Mathematical Analysis of the Water Wave Problem
水波问题的数学分析
- 批准号:
0800194 - 财政年份:2008
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Mathematical Analysis of Vortex Sheet and Water Wave Motion
涡片与水波运动的数学分析
- 批准号:
0400643 - 财政年份:2004
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Mathematical Analysis of Vortex Dynamics and Waterwave Problem.
涡动力学和水波问题的数学分析。
- 批准号:
0433582 - 财政年份:2003
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Motion of Interface Between Two Fluids
两种流体之间的界面运动
- 批准号:
0049023 - 财政年份:2000
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
Motion of Interface Between Two Fluids
两种流体之间的界面运动
- 批准号:
9801094 - 财政年份:1998
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Numerical simulation and vortex analysis of flow turbulence in viscoelastic fluids
粘弹性流体湍流数值模拟与涡流分析
- 批准号:
RGPIN-2022-04720 - 财政年份:2022
- 资助金额:
$ 8.1万 - 项目类别:
Discovery Grants Program - Individual
Experimental analysis of vortex-ring dynamics in dense suspensions to enhance the power density and efficiency of redox flow batteries
稠密悬浮液中涡环动力学的实验分析,以提高氧化还原液流电池的功率密度和效率
- 批准号:
546606-2020 - 财政年份:2022
- 资助金额:
$ 8.1万 - 项目类别:
Postgraduate Scholarships - Doctoral
Experimental analysis of vortex-ring dynamics in dense suspensions to enhance the power density and efficiency of redox flow batteries
稠密悬浮液中涡环动力学的实验分析,以提高氧化还原液流电池的功率密度和效率
- 批准号:
546606-2020 - 财政年份:2021
- 资助金额:
$ 8.1万 - 项目类别:
Postgraduate Scholarships - Doctoral
Analysis on orbital stability of vortex rings
涡环轨道稳定性分析
- 批准号:
20K14347 - 财政年份:2020
- 资助金额:
$ 8.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Experimental analysis of vortex-ring dynamics in dense suspensions to enhance the power density and efficiency of redox flow batteries
稠密悬浮液中涡环动力学的实验分析,以提高氧化还原液流电池的功率密度和效率
- 批准号:
546606-2020 - 财政年份:2020
- 资助金额:
$ 8.1万 - 项目类别:
Postgraduate Scholarships - Doctoral
Modelling the aeroelastic response of slender structures to vortex-induced vibrations for fatigue analysis
模拟细长结构对涡激振动的气动弹性响应以进行疲劳分析
- 批准号:
426322127 - 财政年份:2019
- 资助金额:
$ 8.1万 - 项目类别:
Research Grants
Vibration Attenuation and Fatigue Analysis of the Large Flexible Articulated Boom under Wind Load and Vortex Shedding
大型柔性铰接臂在风载和涡流作用下的振动衰减和疲劳分析
- 批准号:
513864-2017 - 财政年份:2017
- 资助金额:
$ 8.1万 - 项目类别:
Engage Grants Program
Transition state analysis of a rapid and highly exothermic reaction using mixing enhancement by unsteady vortex generation
利用非稳态涡流产生的混合增强对快速高放热反应进行过渡态分析
- 批准号:
16K21161 - 财政年份:2016
- 资助金额:
$ 8.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Autonomous adaptive sampling in PIV image analysis with extension to multi-dimensional PIV and application to vortex shedding behind a flapping wing
PIV 图像分析中的自主自适应采样,扩展到多维 PIV 以及扑翼后涡旋脱落的应用
- 批准号:
1812541 - 财政年份:2016
- 资助金额:
$ 8.1万 - 项目类别:
Studentship
EAGER: Network Resilience Analysis of Complex Vortex Interactions
EAGER:复杂涡相互作用的网络弹性分析
- 批准号:
1632003 - 财政年份:2016
- 资助金额:
$ 8.1万 - 项目类别:
Standard Grant