Applications of Noetherian Ring Theory

诺特环理论的应用

基本信息

项目摘要

Stafford, 9801148Initially, one considers a reductive, complex Lie algebra g with adjoint group G, Cartan subalgebra h and Weyl group W. In this case, Professors Levasseur and Stafford have shown that the Harish-Chandra homomorphism from G-invariant differential operators on g to W-invariant differential operators on h is surjective with kernel generated by tau(g), where tau denotes the differential of of the adjoint action of G on g. This has numerous applications to the theory of invariant eigendistributions, to the representation theory of g and to generalizations of the Springer correspondence. Generalizations of these results and their applications to the G-invariant differential operators for more general G-representations V will be studied. In particular, Professor Stafford intends to study the invariant differential operators on G and on symmetric spaces. These results are also related to longstanding questions about the commuting variety of g (for example, whether it is normal), which Professor Stafford will investigate further.Professor Stafford works in the general area of algebra, specifically in the study of algebras for which multiplication is not commutative. Such algebras arise in many areas of mathematics and science; for example, in the theory of quantum groups (which, ultimately, come from quantum physics), and in the theory of differential equations. The techniques of ``noncommutative Noetherian algebra'' can be applied to study questions in these diverse areas.
斯塔福德,9801148首先,考虑一个约化复李代数g,它具有伴随群G,Cartan子代数h和Weyl群W。 在这种情况下,Levasseur和斯塔福德教授证明了g上G-不变微分算子到h上W-不变微分算子的Harish-Chandra同态是满射的,其核由tau(g)生成,其中tau表示G在g上的伴随作用的微分。 这有许多应用的理论不变的本征分布,代表理论的g和推广的施普林格对应。 这些结果的推广及其应用G-不变微分算子更一般的G-表示V将进行研究。 特别是,斯塔福德教授打算研究G和对称空间上的不变微分算子。 这些结果也与长期存在的问题有关的交换品种的g(例如,它是否是正常的),其中斯塔福德教授将进一步调查。教授斯塔福德工程在一般领域的代数,特别是在代数的研究乘法是不交换的。 这种代数出现在数学和科学的许多领域;例如,量子群理论(最终来自量子物理学)和微分方程理论。 “非交换诺特代数”的技术可以应用于研究这些不同领域的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J. Tobias Stafford其他文献

J. Tobias Stafford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J. Tobias Stafford', 18)}}的其他基金

Noncommutative Geometry and Rings of Differential Operators
非交换几何和微分算子环
  • 批准号:
    0245320
  • 财政年份:
    2003
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Regular Graded Noetherian Rings
数学科学:常规分级诺特环
  • 批准号:
    9304423
  • 财政年份:
    1993
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Noncommutative Projective Geometry
数学科学:非交换射影几何
  • 批准号:
    9002769
  • 财政年份:
    1990
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Continuing Grant

相似海外基金

Silting theory of Noetherian algebras and subcategories
诺特代数及其子范畴的淤积理论
  • 批准号:
    22KJ2611
  • 财政年份:
    2023
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Noetherian algebras and their modules
诺特代数及其模
  • 批准号:
    2609472
  • 财政年份:
    2021
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Studentship
Right Noetherian and coherent monoids
右诺特和相干幺半群
  • 批准号:
    EP/V002953/1
  • 财政年份:
    2021
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Research Grant
Right Noetherian and coherent monoids
右诺特和相干幺半群
  • 批准号:
    EP/V003224/1
  • 财政年份:
    2021
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Research Grant
Generation problems in module categories and derived categories of commutative noetherian rings
交换诺特环模范畴和派生范畴的生成问题
  • 批准号:
    19K03443
  • 财政年份:
    2019
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research in Noncommutative Algebra: Hopf Algebra Actions on Noetherian Artin-Schelter Regular Algebras and Noncommutative McKay Correspondence
非交换代数研究:Noetherian Artin-Schelter 正则代数上的 Hopf 代数作用和非交换麦凯对应
  • 批准号:
    1700825
  • 财政年份:
    2017
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Standard Grant
New development of the theory of noetherian rings using spectra of abelian categories
利用阿贝尔范畴谱诺特环理论的新发展
  • 批准号:
    17K14164
  • 财政年份:
    2017
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Non-noetherian groups and primitivity of group rings of their groups
非诺特群及其群环的本性
  • 批准号:
    26400055
  • 财政年份:
    2014
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of ABness of commutative noetherian rings
交换诺特环AB性的研究
  • 批准号:
    23840043
  • 财政年份:
    2011
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Research on Noetherian property of symbolic Rees algebras
符号Rees代数的Noetherian性质研究
  • 批准号:
    23540042
  • 财政年份:
    2011
  • 资助金额:
    $ 32.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了