Problems in Analysis Related to Symmetrization
与对称化相关的分析问题
基本信息
- 批准号:9801282
- 负责人:
- 金额:$ 8.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-9801282 Principal Investigator: Albert Baernstein II Abstract: Professor Baernstein is writing a book on the theory and practice of symmetrization, in which particular symmetrization tools such as inequalities for Dirichlet integrals and convolutions will be obtained in a unified way from certain "main inequalities." The tools will then be applied to prove a number of results in real and complex analysis and in partial differential equations. Baernstein is also investigating particular extremal problems in which symmetries of various kinds play a role. Examples include finding the exact values of the Bloch and Landau constants in complex function theory, determining L-p norms of k-plane transforms, and investigating a conjectural integral inequality for gradients of vector fields in the plane whose truth would tell us the L-p norm of a singular integral operator related to quasiconformal mappings, and whose falsity would confirm a conjecture of C.B. Morrey in the calculus of variations which asserts that rank-one convex functions need not be quasisconvex. The prototypical result on which Baernstein's project is modelled is the isoperimetric inequality. In simplest form, this inequality asserts that if a plot of land is to be enclosed by a fence of specified length, then to make the area inside the fence as large as possible, one should lay out the fence in a circle. Each of the unsolved problems mentioned in the first paragraph can be interpreted as an "extremal problem" of the same flavor as the isoperimetric inequality, in that the expected extremals are the competitors which appear to have the most symmetry. The challenge to the researcher is to devise mathematical tools which enable one to prove in a rigorous fashion that the expected extremals really are extremal, or to discover "counterexamples" which show that the established guess for the extremals was wrong. The problems mentioned above come from mathematical fields with connections to various domains of application . Phenomena encountered in the search for exact Bloch and Landau constants are related to crystallography, k-plane transforms occur in tomography, and quasiconformal mappings are related to elasticity theory and to problems about optimal mixtures of materials.
建议:DMS-9801282首席研究员:阿尔伯特·巴恩斯坦二世摘要:巴恩斯坦教授正在写一本关于对称化理论和实践的书,在书中,特定的对称化工具,如狄利克莱积分和卷积的不等式,将以统一的方式从某些“主要不等式”获得。然后,这些工具将被用来在真实和复杂的分析以及偏微分方程式中证明一些结果。巴恩斯坦还在研究特殊的极端问题,在这些问题中,各种对称性都起着作用。例如,求复变函数论中Bloch常数和Landau常数的精确值,确定k平面变换的L-p范数,以及研究平面上向量场梯度的一个猜想积分不等式,它的真假将告诉我们与拟共形映射有关的奇异积分算子的L-p范数,它的假将证实C.B.Morrey在变分中的一个猜想,该猜想断言一阶凸函数不必是拟凸的。巴恩斯坦的项目所依据的典型结果是等周不等。在最简单的形式中,这种不平等断言,如果一块土地要被指定长度的栅栏围住,那么为了使栅栏内的面积尽可能大,人们应该将栅栏布置成一个圆圈。第一段中提到的每一个未解决的问题都可以被解释为一个与等周不等式感相同的“极值问题”,因为预期的极值是似乎具有最大对称性的竞争者。研究人员面临的挑战是设计数学工具,使人们能够以严格的方式证明预期的极值确实是极端的,或者发现表明对极值的既定猜测是错误的“反例”。上述问题来自与各种应用领域相关的数学领域。在寻找精确的Bloch和Landau常数时遇到的现象与结晶学有关,在层析成像中发生k平面变换,而准共形映射与弹性理论和最佳材料混合物的问题有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Albert Baernstein其他文献
The size of the set where a univalent function is large
- DOI:
10.1007/bf02820443 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Albert Baernstein - 通讯作者:
Albert Baernstein
Estimates for inverse coefficients of univalent functions from integral means
- DOI:
10.1007/bf02761231 - 发表时间:
1980-03-01 - 期刊:
- 影响因子:0.800
- 作者:
Albert Baernstein;Glenn Schober - 通讯作者:
Glenn Schober
A counterexample concerning integrability of derivatives of conformal mappings
- DOI:
10.1007/bf02793417 - 发表时间:
1989-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Albert Baernstein - 通讯作者:
Albert Baernstein
Albert Baernstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Albert Baernstein', 18)}}的其他基金
Mathematical Sciences: Problems in Analysis Related to Symmetrization
数学科学:与对称化相关的分析问题
- 批准号:
9501293 - 财政年份:1995
- 资助金额:
$ 8.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Analysis Related to Symmetrization
数学科学:与对称化相关的分析问题
- 批准号:
9206319 - 财政年份:1992
- 资助金额:
$ 8.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analysis Related to Symmetrization
数学科学:与对称化相关的分析
- 批准号:
8900525 - 财政年份:1989
- 资助金额:
$ 8.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Some Problems in Classical Analysis
数学科学:经典分析中的一些问题
- 批准号:
8600843 - 财政年份:1986
- 资助金额:
$ 8.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Complex Analysis and Quasiconformal Mapping
数学科学:复分析和拟共形映射
- 批准号:
8301574 - 财政年份:1983
- 资助金额:
$ 8.24万 - 项目类别:
Continuing Grant
Some Problems in Classical Complex Analysis
经典复分析的一些问题
- 批准号:
7701156 - 财政年份:1977
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
Some Problems in the Theory of Meromorphic Functions
亚纯函数理论中的一些问题
- 批准号:
7308854 - 财政年份:1973
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
- 批准号:
RGPIN-2021-03545 - 财政年份:2022
- 资助金额:
$ 8.24万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Szego Theory, Moment Problems, and Related Problems in Noncommutative Analysis
非交换 Szego 理论、矩问题以及非交换分析中的相关问题
- 批准号:
2751175 - 财政年份:2022
- 资助金额:
$ 8.24万 - 项目类别:
Studentship
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
- 批准号:
RGPIN-2021-03545 - 财政年份:2021
- 资助金额:
$ 8.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical analysis for fractional diffusion-wave equations and related inverse problems
分数扩散波方程及相关反问题的数学分析
- 批准号:
20K14355 - 财政年份:2020
- 资助金额:
$ 8.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stability analysis for inverse problems of fractional partial differential equations and related topics
分数阶偏微分方程反问题的稳定性分析及相关主题
- 批准号:
19K23400 - 财政年份:2019
- 资助金额:
$ 8.24万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2019
- 资助金额:
$ 8.24万 - 项目类别:
Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2018
- 资助金额:
$ 8.24万 - 项目类别:
Discovery Grants Program - Individual
Analysis of Cayley decomposition of integral convex polytopes and solutions of related problems
积分凸多胞形凯莱分解分析及相关问题的解答
- 批准号:
17K14177 - 财政年份:2017
- 资助金额:
$ 8.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2017
- 资助金额:
$ 8.24万 - 项目类别:
Discovery Grants Program - Individual
Stability analysis of compressible viscous fluids and related problems
可压缩粘性流体的稳定性分析及相关问题
- 批准号:
17K14216 - 财政年份:2017
- 资助金额:
$ 8.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)