Partial Differential Equations

偏微分方程

基本信息

  • 批准号:
    9801626
  • 负责人:
  • 金额:
    $ 47.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

Proposal:DMS-9801626 Principal Investigator: Joseph J. Kohn Abstract: Kohn will continue to do research in the theory of several complex variables, partial differential equations and related topics. In particular, he is interested in: global regularity, hypoellipticity, Holder and L-p estimates, domains with piecewise smooth boundaries, and embeddings of CR manifolds. Kohn is currently working on the subject of hypoellipticity both for boundary behavior in several complex variables and for differential and pseudodifferential operators. His interest is in finding qualitative (be they geometric or algebraic) conditions under which hypoellipticity holds. The technical part of much of this research is connected with estimates which do not "gain" smoothness, so the error terms are of the same magnitude as the object one is trying to estimate. Kohn is developing techniques to deal with this type of difficulty. Since Cardano's work on the cubic equation in the sixteenth century it has been known that complex numbers are needed, as an intermediary step, to find real solutions of certain problems even when such numbers appear neither in the statements nor in the solutions of the problems themselves. Thus, by the middle of the last century, it was recognized that complex analysis is deeply intertwined with many fundamental problems of mathematics, science, and technology. One of the most spectacular instances of this is the use of "Dirichlet's principle" (which arises in fluid mechanics) to understand the foundations of the theory of functions of one complex variable and, in turn, the use of complex analysis in the study of fluid flows. In recent times much of the research in complex analysis has focused on functions of several complex variables, where the counterpart of the Dirichlet principle appears in what is known as Hodge theory and in the so-called d-bar Neumann problem. Kohn is doing research in this area, research that also involves work in partial differential equations, harmonic a nalysis, and geometry. Kohn is currently working on problems of "smoothness" and "propagation of singularities" that arise in the study of partial differential equations.
建议:DMS-9801626首席研究员:约瑟夫·J·科恩摘要:科恩将继续研究几个复变量理论、偏微分方程及相关课题。特别是,他感兴趣的是:整体正则性,亚椭圆性,Holder和L-p估计,具有分段光滑边界的区域,以及CR流形的嵌入。科恩目前正在研究亚椭圆性问题,包括几个复变量的边界行为,以及微分和伪微分算子。他的兴趣是找到亚椭圆性成立的定性条件(无论是几何条件还是代数条件)。这项研究的技术部分与不“获得”平稳性的估计有关,因此误差项与试图估计的对象具有相同的幅度。科恩正在开发处理这类困难的技术。自从16世纪卡达诺关于三次方程的工作以来,人们已经知道,作为中介步骤,需要复数来寻找某些问题的真正解,即使这些数字既不出现在语句中,也不出现在问题本身的解中。因此,到上个世纪中叶,人们认识到复杂分析与数学、科学和技术的许多基本问题深深地交织在一起。其中最壮观的例子之一就是利用“狄利克莱原理”(它产生于流体力学)来理解单复变量函数理论的基础,进而在流体流动的研究中使用复变分析。近年来,复分析的许多研究都集中在多个复变量的函数上,其中狄利克莱原理的对应出现在众所周知的霍奇理论和所谓的d-bar Neumann问题中。科恩正在做这方面的研究,这项研究还涉及偏微分方程、调和分析和几何方面的工作。科恩目前正在研究偏微分方程研究中出现的“光滑性”和“奇点传播”问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Kohn其他文献

Joseph Kohn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Kohn', 18)}}的其他基金

Partial Differential Equations
偏微分方程
  • 批准号:
    0107874
  • 财政年份:
    2001
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: "Partial Differential Equations"
数学科学:“偏微分方程”
  • 批准号:
    9208188
  • 财政年份:
    1992
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Continuing Grant
Bolivarian Mathematics Workshop: Quito Ecuador, July 16-21, 1990
玻利瓦尔数学研讨会:厄瓜多尔基多,1990 年 7 月 16 日至 21 日
  • 批准号:
    9002840
  • 财政年份:
    1990
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Partial Differential Equations
数学科学:偏微分方程
  • 批准号:
    8905039
  • 财政年份:
    1989
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Partial Differential Equations
数学科学:偏微分方程
  • 批准号:
    8600038
  • 财政年份:
    1986
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Continuing Grant
U.S.- Mexico Conference on Algebraic Geometry, Topology And Differential Equations; December 10 - 14, 1984; Mexico City
美国-墨西哥代数几何、拓扑和微分方程会议;
  • 批准号:
    8414431
  • 财政年份:
    1984
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Partial Differential Equations
数学科学:偏微分方程
  • 批准号:
    8213077
  • 财政年份:
    1983
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Continuing Grant
Partial Differential Equations
偏微分方程
  • 批准号:
    7908690
  • 财政年份:
    1980
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Continuing Grant
Partial Differential Equations
偏微分方程
  • 批准号:
    7623465
  • 财政年份:
    1976
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
  • 批准号:
    DP220100937
  • 财政年份:
    2023
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 47.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了