Enumeration of Perfect Matching of Graphs with Applications

图与应用完美匹配的枚举

基本信息

  • 批准号:
    9802390
  • 负责人:
  • 金额:
    $ 7.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

Ciucu 9802390 This project is concerned with the enumeration of perfect matchings of certain special graphs that turn out to be closely related to several important problems in combinatorics (enumeration of spanning trees, plane partitions, alternating sign matrices), and also have strong connections with interesting questions in probability (rapidly mixing Markov chains) and statistical physics (dimer models and vertex models). Specifically, based on the solution the PI found for an open spanning tree enumeration problem posed by Stanley, the PI intends to extend the ideas in his previous work on the factorization theorem for perfect matchings of symmetric graphs to obtain similar factorizations for characteristic polynomials of graphs and, as a consequence, for spanning trees. Furthemore, the PI intends to use ideas from his work on the complementation theorem for perfect matchings to classify periodic weightings of the Aztec diamond that lead to nice enumeration formulas. This would give a unified perspective on several results of Elkies, Kuperberg, Larsen and Propp, B. Y. Yang, Stanley and the PI. In addition to the core research program outlined above, the PI intends to pursue three additional problems. First, the PI will pursue extending comparison results of Diaconis and Saloff-Coste to non-reversible Markov chains. This would allow one to deduce the rapid mixing of the elementary move Markov chain on certain three dimensional ``lozenge'' tilings, considered by the PI as an analog of the two dimensional situation studied by Luby, Randall and Sinclair. Second, the PI will continue his investigations of the three dimensional dimer problem by considering, besides the simple cubic lattice, other lattices of comparable interest (e.g., the body-centered cubic lattice or the face-centered cubic lattice), as well as some other problems likely to be suitable for such an analysis (e.g., three-colorings of the cubic lattice). And third, the PI intends to extend his joint work w ith C. Krattenthaler on enumeration of lozenge tilings of certain regions of the triangular lattice to more general (possibly weighted) regions relevant to plane partition enumeration. This research is in the general area of Combinatorics. One of the goals of Combinatorics is to find efficient methods of studying how discrete collections of objects can be arranged. The behavior of discrete systems is extremely important to modern communications. For example, the design of large networks, such as those occurring in telephone systems, and the design of algorithms in computer science deal with discrete sets of objects, and this makes use of combinatorial research.
Ciucu 9802390 该项目涉及某些特殊图的完美匹配的枚举,这些特殊图与组合学中的几个重要问题(生成树的枚举、平面分区、交替符号矩阵)密切相关,并且与概率(快速混合马尔可夫链)和统计物理(二聚体模型和顶点模型)中的有趣问题有很强的联系。具体来说,基于 PI 为 Stanley 提出的开放生成树枚举问题找到的解决方案,PI 打算扩展他之前关于对称图完美匹配因式分解定理的工作中的思想,以获得图的特征多项式的类似因式分解,从而获得生成树的类似因式分解。此外,PI 打算利用他在完美匹配互补定理方面的研究成果来对阿兹特克钻石的周期权重进行分类,从而得出良好的枚举公式。这将为 Elkies、Kuperberg、Larsen 和 Propp、B. Y. Yang、Stanley 和 PI 的多项结果提供统一的视角。除了上述核心研究计划外,PI 还打算解决另外三个问题。首先,PI 将追求将 Diaconis 和 Saloff-Coste 的比较结果扩展到不可逆马尔可夫链。这将允许人们推断出基本移动马尔可夫链在某些三维“菱形”平铺上的快速混合,PI 将其视为 Luby、Randall 和 Sinclair 研究的二维情况的模拟。其次,PI将继续对三维二聚体问题的研究,除了简单立方晶格之外,还考虑其他类似感兴趣的晶格(例如体心立方晶格或面心立方晶格),以及可能适合此类分析的其他一些问题(例如立方晶格的三色)。第三,PI 打算将他与 C. Krattenthaler 的合作工作扩展到三角格子某些区域的菱形平铺枚举到与平面分区枚举相关的更一般(可能是加权)区域。 这项研究属于组合学的一般领域。组合学的目标之一是找到研究如何排列离散对象集合的有效方法。离散系统的行为对于现代通信极其重要。例如,大型网络的设计(例如电话系统中的网络)以及计算机科学中处理离散对象集的算法设计,都利用了组合研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mihai Ciucu其他文献

A generalization of Kuo condensation
郭凝结的推广
Another dual of MacMahon's theorem on plane partitions
麦克马洪平面分割定理的另一个对偶
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mihai Ciucu
  • 通讯作者:
    Mihai Ciucu
Lozenge Tilings with Gaps in a 90° Wedge Domain with Mixed Boundary Conditions
具有混合边界条件的 90° 楔形域中具有间隙的菱形平铺
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mihai Ciucu
  • 通讯作者:
    Mihai Ciucu
A factorization theorem for lozenge tilings of a hexagon with triangular holes
带三角孔的六边形菱形镶嵌的因式分解定理
  • DOI:
    10.1090/tran/7047
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mihai Ciucu;C. Krattenthaler
  • 通讯作者:
    C. Krattenthaler
Lozenge tilings of hexagons with removed core and satellites
去除核心和卫星的六边形菱形瓷砖

Mihai Ciucu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mihai Ciucu', 18)}}的其他基金

Dimer systems with gaps and their connections with statistical physics, plane partitions, and alternating sign matrices
具有间隙的二聚体系统及其与统计物理、平面分区和交替符号矩阵的联系
  • 批准号:
    1501052
  • 财政年份:
    2015
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Continuing Grant
The interaction of gaps in dimer systems and beyond
二聚体系统及其他系统中间隙的相互作用
  • 批准号:
    1101670
  • 财政年份:
    2011
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Standard Grant
Dimer-mediated interaction of gaps in lattice graphs
格子图中间隙的二聚体介导的相互作用
  • 批准号:
    0801625
  • 财政年份:
    2008
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Continuing Grant
Asymptotic Enumeration of Tilings of Lattice Regions With Holes: A Finer Analysis Under Various Boundary Conditions
带孔晶格区域平铺的渐近枚举:各种边界条件下的更精细分析
  • 批准号:
    0500616
  • 财政年份:
    2005
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Continuing Grant
Asymptotic Enumeration of Perfect Matchings of Lattice Graphs
格图完美匹配的渐近枚举
  • 批准号:
    0100950
  • 财政年份:
    2001
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341951
  • 财政年份:
    2024
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Standard Grant
Predicting Perfect Partners: climate resilient seed production technology
预测完美合作伙伴:适应气候变化的种子生产技术
  • 批准号:
    LP200301540
  • 财政年份:
    2023
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Linkage Projects
Pitch Perfect - tuning low-order aerodynamic models for non-periodic flows
Pitch Perfect - 调整非周期流动的低阶空气动力学模型
  • 批准号:
    2889832
  • 财政年份:
    2023
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Studentship
TOPIC 453: THE PERFECT MEDICAL ASSISTANT FOR CANCER PREVENTION WITHIN PRIMARY CARE
主题 453:初级保健中预防癌症的完美医疗助手
  • 批准号:
    10931123
  • 财政年份:
    2023
  • 资助金额:
    $ 7.71万
  • 项目类别:
Perfect Electromagnetic Teleporting Metasurface Wormholes
完美电磁瞬移超表面虫洞
  • 批准号:
    2247287
  • 财政年份:
    2023
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Standard Grant
Finding the Perfect Time to Hunt for HIV: A Tale of 36 Hours at the CHUM
寻找寻找 HIV 的最佳时间:CHUM 36 小时的故事
  • 批准号:
    485615
  • 财政年份:
    2023
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Miscellaneous Programs
Application of perfect sampling with SAT/SMT solvers
SAT/SMT 求解器完美采样的应用
  • 批准号:
    23K10998
  • 财政年份:
    2023
  • 资助金额:
    $ 7.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了