Asymptotic Enumeration of Perfect Matchings of Lattice Graphs
格图完美匹配的渐近枚举
基本信息
- 批准号:0100950
- 负责人:
- 金额:$ 8.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-15 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with the asymptotic and exact enumeration of perfect matchings of certain lattice graphs (or, in an equivalent language, enumeration of tilings of the regions dual to these graphs) that turn out to be closely related to several important problems in combinatorics (enumeration of spanning trees, plane partitions, alternating sign matrices), and that appear in statistical physics in the guise of the dimer model. Specifically, motivated by the monomer-monomer correlation introduced by Fisher and Stephenson, and based on the exact enumeration found by the proposer of the tilings of certain hexagonal regions with triangular holes along their symmetry axes (which generalizes MacMahon's theorem on counting plane partitions), the proposer pursues extending his work on the asymptotic enumeration of tilings in the situation when the holes are not necessarily on the symmetry axis of the region. This should bring useful insight into an important conjecture of Fisher and Stephenson concerning the rotational invariance of the monomer-monomer correlation. Furthermore, the proposer studies three additional problems. First, the proposer pursues extending the arguments that allowed him to prove directly one identity from a set of four similar identities he found relating eight of the ten symmetry classes of plane partitions to the remaining three identities. This would help explaining the still mysterious fact that all ten cases are enumerated by simple product formulas and would bring close to completion the task of finding combinatorial proofs for all ten cases. Second, the proposer continues his work on the three dimensional dimer problem by considering the question of improving the lower bound, employing extensions to three dimensions of the Gessel-Viennot and Kasteleyn theorems that yield signed enumerations. And third, the proposer uses a generalization of his complementation theorem for perfect matchings to classify the periodic weightings of the Aztec diamond that lead to simple product enumeration formulas, thus giving a unified perspective on several results of Elkies, Kuperberg, Larsen and Propp, B. Y. Yang, Stanley and the proposer.This research is in the general area of Combinatorics. One of the goals of Combinatorics is to find efficient methods of studying how discrete collections of objects can be arranged. The behavior of discrete systems is extremely important to modern communications. For example, the design of large networks, such as those occurring in telephone systems, and the design of algorithms in computer science deal with discrete sets of objects, and this makes use of combinatorial research. The specific problems in this project are instances of the dimer model of statistical physics. A basic illustration of this is the real-world process (relevant to the study of of lubricants) of adsorption of a liquid, consisting of two-atom molecules --- the dimers in the model --- along the surface of a crystal, whose fixed atoms form a lattice pattern, with any two neighboring positions capable of holding one molecule, and any given crystal atom being involved in the adsorption of at most one molecule. The main issue in this setting is the asymptotic behavior of the quantities that are studied (specifically, the number of different ways the surface of the crystal can be covered by molecules), but it turns out in the present context that the usually more difficult problem of determining quantities exactly allows progress in the asymptotic study.
这个项目是关于某些格图的完美匹配的渐近和精确枚举(或者,用等效的语言,对这些图的对偶区域的平铺枚举),结果与组合学中的几个重要问题(生成树的枚举,平面划分,交替符号矩阵)密切相关,并且以二聚体模型的名义出现在统计物理中。具体地说,在Fisher和Stephenson引入的单体-单体相关理论的推动下,基于作者对某些六边形区域沿对称轴有三角形孔的平铺的精确枚举(这推广了MacMahon计算平面分区的定理),作者扩展了他的工作,研究了洞不一定在区域对称轴上的情况下平铺的渐近枚举。这将有助于理解Fisher和Stephenson关于单体-单体相关的旋转不变性的重要猜想。此外,本文还研究了三个附加问题。首先,提出者继续扩展他的论证,这些论证使他能够从一组四个相似的恒等式中直接证明一个恒等式,他发现这四个相似的恒等式将平面划分的十个对称类中的八个与剩下的三个恒等式联系起来。这将有助于解释所有十种情况都是由简单的乘积公式列举出来的这个仍然神秘的事实,并将使为所有十种情况找到组合证明的任务接近完成。其次,作者继续他在三维二聚体问题上的工作,通过考虑改进下界的问题,将Gessel-Viennot定理和Kasteleyn定理扩展到三维,产生有符号枚举。第三,通过对他的完美匹配互补定理的推广,对阿兹特克钻石的周期权重进行分类,从而得出简单的乘积枚举公式,从而对Elkies、Kuperberg、Larsen和Propp、b.y. Yang、Stanley和作者的几个结果给出了统一的视角。这项研究属于组合学的一般领域。组合学的目标之一是找到研究离散对象集合如何排列的有效方法。离散系统的行为对现代通信极为重要。例如,大型网络的设计,比如那些出现在电话系统中的网络,以及计算机科学中处理离散对象集的算法设计,这就利用了组合研究。这个项目中的具体问题是统计物理的二聚体模型的实例。一个基本的例子是现实世界中液体的吸附过程(与润滑油的研究有关),由两原子分子组成的液体——模型中的二聚体——沿着晶体表面,其固定的原子形成晶格模式,任意两个相邻的位置都能容纳一个分子,任何给定的晶体原子都参与了最多一个分子的吸附。这种情况下的主要问题是所研究的量的渐近行为(具体来说,晶体表面可以被分子覆盖的不同方式的数量),但在目前的情况下,通常更困难的确定量的问题恰恰允许渐近研究取得进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihai Ciucu其他文献
Another dual of MacMahon's theorem on plane partitions
麦克马洪平面分割定理的另一个对偶
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Mihai Ciucu - 通讯作者:
Mihai Ciucu
Lozenge Tilings with Gaps in a 90° Wedge Domain with Mixed Boundary Conditions
具有混合边界条件的 90° 楔形域中具有间隙的菱形平铺
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Mihai Ciucu - 通讯作者:
Mihai Ciucu
A factorization theorem for lozenge tilings of a hexagon with triangular holes
带三角孔的六边形菱形镶嵌的因式分解定理
- DOI:
10.1090/tran/7047 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Mihai Ciucu;C. Krattenthaler - 通讯作者:
C. Krattenthaler
Lozenge tilings of hexagons with removed core and satellites
去除核心和卫星的六边形菱形瓷砖
- DOI:
10.4171/aihpd/131 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Mihai Ciucu;Ilse Fischer - 通讯作者:
Ilse Fischer
Mihai Ciucu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihai Ciucu', 18)}}的其他基金
Dimer systems with gaps and their connections with statistical physics, plane partitions, and alternating sign matrices
具有间隙的二聚体系统及其与统计物理、平面分区和交替符号矩阵的联系
- 批准号:
1501052 - 财政年份:2015
- 资助金额:
$ 8.07万 - 项目类别:
Continuing Grant
The interaction of gaps in dimer systems and beyond
二聚体系统及其他系统中间隙的相互作用
- 批准号:
1101670 - 财政年份:2011
- 资助金额:
$ 8.07万 - 项目类别:
Standard Grant
Dimer-mediated interaction of gaps in lattice graphs
格子图中间隙的二聚体介导的相互作用
- 批准号:
0801625 - 财政年份:2008
- 资助金额:
$ 8.07万 - 项目类别:
Continuing Grant
Asymptotic Enumeration of Tilings of Lattice Regions With Holes: A Finer Analysis Under Various Boundary Conditions
带孔晶格区域平铺的渐近枚举:各种边界条件下的更精细分析
- 批准号:
0500616 - 财政年份:2005
- 资助金额:
$ 8.07万 - 项目类别:
Continuing Grant
Enumeration of Perfect Matching of Graphs with Applications
图与应用完美匹配的枚举
- 批准号:
9802390 - 财政年份:1998
- 资助金额:
$ 8.07万 - 项目类别:
Standard Grant
相似海外基金
Exploration of Crystal Surface Structures through Enumeration of Discrete Structures on an Infinite Plane and Similarity Design
通过无限平面上离散结构的枚举和相似性设计探索晶体表面结构
- 批准号:
23H03461 - 财政年份:2023
- 资助金额:
$ 8.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Algebraic and Combinatorial Methods in Permutation Enumeration
LEAPS-MPS:排列枚举中的代数和组合方法
- 批准号:
2316181 - 财政年份:2023
- 资助金额:
$ 8.07万 - 项目类别:
Standard Grant
STTR Phase I: Feasibility of multi-layer microplate test for rapid detection and enumeration of Salmonella spp. in raw poultry and processing environment samples
STTR 第一阶段:用于快速检测和计数沙门氏菌的多层微孔板测试的可行性。
- 批准号:
2135699 - 财政年份:2022
- 资助金额:
$ 8.07万 - 项目类别:
Standard Grant
Enumeration and random generation of contingency tables with given margins
具有给定边距的列联表的枚举和随机生成
- 批准号:
DP220103074 - 财政年份:2022
- 资助金额:
$ 8.07万 - 项目类别:
Discovery Projects
Study on developing enumeration algorithms based on a supergraph technique
基于超图技术的枚举算法开发研究
- 批准号:
22K17849 - 财政年份:2022
- 资助金额:
$ 8.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Game Values, Temperature, and Enumeration of Placement Games
放置游戏的游戏值、温度和枚举
- 批准号:
RGPIN-2022-04273 - 财政年份:2022
- 资助金额:
$ 8.07万 - 项目类别:
Discovery Grants Program - Individual
Enumeration, random tilings and integrable probability
枚举、随机平铺和可积概率
- 批准号:
574832-2022 - 财政年份:2022
- 资助金额:
$ 8.07万 - 项目类别:
University Undergraduate Student Research Awards
Special orthogonal matrices: existence, enumeration, and applications
特殊正交矩阵:存在性、枚举和应用
- 批准号:
RGPIN-2019-05389 - 财政年份:2022
- 资助金额:
$ 8.07万 - 项目类别:
Discovery Grants Program - Individual
Game Values, Temperature, and Enumeration of Placement Games
放置游戏的游戏值、温度和枚举
- 批准号:
DGECR-2022-00452 - 财政年份:2022
- 资助金额:
$ 8.07万 - 项目类别:
Discovery Launch Supplement
Computable Mathematics Measured by Enumeration Degrees
用枚举度来衡量的可计算数学
- 批准号:
2053848 - 财政年份:2021
- 资助金额:
$ 8.07万 - 项目类别:
Continuing Grant














{{item.name}}会员




