Asymptotic Enumeration of Tilings of Lattice Regions With Holes: A Finer Analysis Under Various Boundary Conditions

带孔晶格区域平铺的渐近枚举:各种边界条件下的更精细分析

基本信息

  • 批准号:
    0500616
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

This proposal is concerned with the asymptotic enumeration of tilings of lattice regions with holes. More specifically, using work of Fisher and Stephenson as its starting point, it studies the interaction of the holes when all the leftover portion is tiled, via a certain averaging over all such possible tilings, called the joint correlation of the holes. In earlier work, the proposer proved that the case of triangular holes on the triangular lattice is governed, for large separations between the holes, by a law closely resembling the superposition principle of electrostatics, where holes correspond to charges of magnitude equal to the difference between the number of unit triangles of each orientation they enclose. In the current project, the proposer presents a program of research problems that extend his previous work in some new, interrelated directions. One of these problems concerns generalizing the superposition principle for correlation to the case when the holes can be arbitrary (not necessarily connected) unions of lattice triangles of side two. Another problem considers a finer analysis of the correlation, namely the study of its variation under small displacements of individual holes. The proposer conjectures that these finer changes are also governed by a superposition principle, analogous to the superposition principle for the electric field in electrostatics. A third problem is concerned with studying boundary effects. Besides the core research program outlined above, the proposer also intends to study the symmetry classes of perfect matchings of a certain family of graphs on the lattice determined by the tiling of the plane by squares, regular hexagons and regular dodecagons, and determine to what degree a parallel he found between the perfect matchings of these graphs and the intensively studied plane partitions extends when considering the action of symmetry groups.This research is in the general area of Combinatorics. One of the goals of Combinatorics is to find efficient methods of studying how discrete collections of objects can be arranged. The behavior of discrete systems is extremely important to modern communications. For example, the design of large networks, such as those occurring in telephone systems, and the design of algorithms in computer science deal with discrete sets of objects, and this makes use of combinatorial research. The specific problems in this project are instances of the dimer model of statistical physics. A basic illustration of this is the real-world process (relevant to the study of of lubricants) of adsorption of a liquid, consisting of two-atom molecules---the dimers in the model---along the surface of a crystal, whose fixed atoms form a lattice pattern, with any two neighboring positions capable of holding one molecule, and any given crystal atom being involved in the adsorption of at most one molecule. The main issue in this setting is the asymptotic behavior of the quantities that are studied (speciffically, the number of different ways the surface of the crystal can be covered by molecules). In some of the instances we encounter, the usually more difficult problem of determining quantities exactly turns out to allow progress in the asymptotic study.
本文研究了带孔点阵区域的渐近枚举问题。更具体地说,它以Fisher和Stephenson的工作为出发点,通过对所有可能的平铺进行一定的平均,称为孔的联合相关,研究所有剩余部分平铺时孔的相互作用。在早期的工作中,提出者证明了三角形晶格上的三角形孔的情况,对于孔之间的大间隔,由一个非常类似于静电叠加原理的定律控制,其中孔对应的电荷的大小等于它们所包围的每个方向的单位三角形的数量之差。在目前的项目中,申请人提出了一个研究问题的计划,在一些新的、相互关联的方向上扩展了他以前的工作。其中一个问题是将相关的叠加原理推广到洞可以是任意(不一定是连通的)边2的晶格三角形的并集的情况。另一个问题考虑对相关性进行更精细的分析,即研究其在单个孔的小位移下的变化。提出者推测,这些细微的变化也受到叠加原理的支配,类似于静电学中电场的叠加原理。第三个问题与研究边界效应有关。除上述核心研究计划外,本文还打算研究由正方形、正六边形和正十二边形平铺平面所决定的晶格上某族图的完美匹配的对称类,并在考虑对称群的作用时,确定这些图的完美匹配与已深入研究的平面分区之间的平行延伸到何种程度。这项研究属于组合学的一般领域。组合学的目标之一是找到研究离散对象集合如何排列的有效方法。离散系统的行为对现代通信极为重要。例如,大型网络的设计,比如那些出现在电话系统中的网络,以及计算机科学中处理离散对象集的算法设计,这就利用了组合研究。这个项目中的具体问题是统计物理的二聚体模型的实例。一个基本的例子是现实世界中液体的吸附过程(与润滑油的研究有关),由两原子分子组成的液体——模型中的二聚体——沿着晶体表面,其固定的原子形成晶格模式,任意两个相邻的位置都能容纳一个分子,任何给定的晶体原子都参与了最多一个分子的吸附。这种情况下的主要问题是所研究的量的渐近行为(具体来说,晶体表面可以被分子覆盖的不同方式的数量)。在我们遇到的一些例子中,通常更困难的确定数量的问题最终证明可以在渐近研究中取得进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mihai Ciucu其他文献

A generalization of Kuo condensation
郭凝结的推广
Another dual of MacMahon's theorem on plane partitions
麦克马洪平面分割定理的另一个对偶
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mihai Ciucu
  • 通讯作者:
    Mihai Ciucu
Lozenge Tilings with Gaps in a 90° Wedge Domain with Mixed Boundary Conditions
具有混合边界条件的 90° 楔形域中具有间隙的菱形平铺
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mihai Ciucu
  • 通讯作者:
    Mihai Ciucu
A factorization theorem for lozenge tilings of a hexagon with triangular holes
带三角孔的六边形菱形镶嵌的因式分解定理
  • DOI:
    10.1090/tran/7047
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mihai Ciucu;C. Krattenthaler
  • 通讯作者:
    C. Krattenthaler
Lozenge tilings of hexagons with removed core and satellites
去除核心和卫星的六边形菱形瓷砖

Mihai Ciucu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mihai Ciucu', 18)}}的其他基金

Dimer systems with gaps and their connections with statistical physics, plane partitions, and alternating sign matrices
具有间隙的二聚体系统及其与统计物理、平面分区和交替符号矩阵的联系
  • 批准号:
    1501052
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
The interaction of gaps in dimer systems and beyond
二聚体系统及其他系统中间隙的相互作用
  • 批准号:
    1101670
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dimer-mediated interaction of gaps in lattice graphs
格子图中间隙的二聚体介导的相互作用
  • 批准号:
    0801625
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Asymptotic Enumeration of Perfect Matchings of Lattice Graphs
格图完美匹配的渐近枚举
  • 批准号:
    0100950
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Enumeration of Perfect Matching of Graphs with Applications
图与应用完美匹配的枚举
  • 批准号:
    9802390
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Exploration of Crystal Surface Structures through Enumeration of Discrete Structures on an Infinite Plane and Similarity Design
通过无限平面上离散结构的枚举和相似性设计探索晶体表面结构
  • 批准号:
    23H03461
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Algebraic and Combinatorial Methods in Permutation Enumeration
LEAPS-MPS:排列枚举中的代数和组合方法
  • 批准号:
    2316181
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
STTR Phase I: Feasibility of multi-layer microplate test for rapid detection and enumeration of Salmonella spp. in raw poultry and processing environment samples
STTR 第一阶段:用于快速检测和计数沙门氏菌的多层微孔板测试的可行性。
  • 批准号:
    2135699
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Enumeration and random generation of contingency tables with given margins
具有给定边距的列联表的枚举和随机生成
  • 批准号:
    DP220103074
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Study on developing enumeration algorithms based on a supergraph technique
基于超图技术的枚举算法开发研究
  • 批准号:
    22K17849
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Game Values, Temperature, and Enumeration of Placement Games
放置游戏的游戏值、温度和枚举
  • 批准号:
    RGPIN-2022-04273
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Enumeration, random tilings and integrable probability
枚举、随机平铺和可积概率
  • 批准号:
    574832-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Special orthogonal matrices: existence, enumeration, and applications
特殊正交矩阵:存在性、枚举和应用
  • 批准号:
    RGPIN-2019-05389
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Game Values, Temperature, and Enumeration of Placement Games
放置游戏的游戏值、温度和枚举
  • 批准号:
    DGECR-2022-00452
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Applications of exact and approximate enumeration
精确枚举和近似枚举的应用
  • 批准号:
    RGPIN-2017-03751
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了