The interaction of gaps in dimer systems and beyond
二聚体系统及其他系统中间隙的相互作用
基本信息
- 批准号:1101670
- 负责人:
- 金额:$ 17.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is concerned with the asymptotic enumeration of dimer packings with gaps. More specifically, using work of Fisher and Stephenson as its starting point, it studies how the total number of dimer coverings of the complement of the gaps changes as the gaps are moved around on the lattice graph. The joint correlation of a collection of gaps is a non-negative real number measuring this change, and is the central object of study of this proposal. In earlier work, the proposer proved that the correlation of gaps on the hexagonal lattice is governed, for large separations between the gaps, by a law closely resembling the superposition principle of electrostatics: If each gap is regarded as a point charge of magnitude given by the signed difference between the number of white and black vertices in it (in a fixed white-black coloring of the vertices in which each edge has oppositely colored endpoints), then, for large distances between the gaps, their correlation is proportional to the exponential of the negative of the 2D electrostatic energy of the resulting system of charges. Other previous results concern two naturally defined fields, which the proposer proved approach the electric field in the limit when the lattice spacing approaches zero. In the current project, the proposer presents a program organized in several inter-related groups comprising twenty four specific problems and conjectures. The bulk of this program is aimed at developing further the analogy to phenomena from physics, but the list includes also independent combinatorial problems, such as conjectures on tiling enumeration of new regions and generalizations of classical results on plane partitions.This research is in the general area of Combinatorics. One of the goals of Combinatorics is to find efficient methods of studying how discrete collections of objects can be arranged. The behavior of discrete systems is extremely important to modern communications. For example, the design of large networks, such as those occurring in telephone systems, and the design of algorithms in computer science, deal with discrete sets of objects, and this makes use of combinatorial research. The specific problems in this project are instances of the dimer model of statistical physics. A basic illustration of this is the real-world process (relevant in the study of lubricants) of adsorption of a liquid consisting of diatomic molecules---the dimers in the model---along the surface of a crystal, whose fixed atoms form a lattice pattern, with any two neighboring positions capable of holding one molecule, and any given crystal atom being involved in the adsorption of at most one molecule. The main issue in this setting is the asymptotic behavior of the quantities that are studied (specifically, the number of different ways the surface of the crystal can be covered by molecules). In some of the instances we encounter, the usually more difficult problem of determining quantities exactly turns out in fact to be more tractable, and allows progress in the asymptotic study.
本文研究带间隙二聚体填充的渐近计数问题。更具体地说,使用Fisher和斯蒂芬森的工作作为其出发点,它研究了如何二聚体覆盖的互补的间隙的总数的变化,作为间隙移动周围的格子图。间隙集合的联合相关性是衡量这种变化的非负真实的数,并且是本建议的中心研究对象。在早期的工作中,提出者证明了六边形晶格上间隙的相关性,对于间隙之间的大间隔,由一个非常类似于静电叠加原理的定律控制:如果把每个间隙看作一个点电荷,其大小由其中的白色顶点和黑色顶点的数目之差给出(在顶点的固定的白-黑着色中,其中每个边缘具有相反着色的端点),那么,对于间隙之间的大距离,它们的相关性与所得电荷系统的2D静电能量的负值的指数成比例。其他先前的结果涉及两个自然定义的领域,其中的提议者证明,接近电场的极限时,晶格间距接近零。在目前的项目中,提案人提出了一个由24个具体问题和建议组成的几个相互关联的小组组织的计划。该计划的大部分旨在进一步发展物理现象的类比,但该列表也包括独立的组合问题,例如新区域的平铺枚举和平面分区经典结果的推广。组合数学的目标之一是找到有效的方法来研究如何安排对象的离散集合。离散系统的行为对现代通信极为重要。例如,大型网络的设计,如电话系统中的网络,以及计算机科学中的算法设计,都要处理离散的对象集,这就需要使用组合研究。在这个项目中的具体问题是统计物理的二聚体模型的实例。 这方面的一个基本说明是由双原子分子组成的液体沿着晶体表面吸附的真实过程(与润滑剂的研究有关),晶体的固定原子形成晶格图案,任何两个相邻位置都能够容纳一个分子,并且任何给定的晶体原子参与最多一个分子的吸附。在这种情况下的主要问题是所研究的量的渐近行为(具体来说,分子可以覆盖晶体表面的不同方式的数量)。在我们遇到的一些例子中,通常更困难的确定量的问题实际上变得更容易处理,并允许在渐近研究中取得进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihai Ciucu其他文献
Another dual of MacMahon's theorem on plane partitions
麦克马洪平面分割定理的另一个对偶
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Mihai Ciucu - 通讯作者:
Mihai Ciucu
Lozenge Tilings with Gaps in a 90° Wedge Domain with Mixed Boundary Conditions
具有混合边界条件的 90° 楔形域中具有间隙的菱形平铺
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Mihai Ciucu - 通讯作者:
Mihai Ciucu
A factorization theorem for lozenge tilings of a hexagon with triangular holes
带三角孔的六边形菱形镶嵌的因式分解定理
- DOI:
10.1090/tran/7047 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Mihai Ciucu;C. Krattenthaler - 通讯作者:
C. Krattenthaler
Lozenge tilings of hexagons with removed core and satellites
去除核心和卫星的六边形菱形瓷砖
- DOI:
10.4171/aihpd/131 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Mihai Ciucu;Ilse Fischer - 通讯作者:
Ilse Fischer
Mihai Ciucu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihai Ciucu', 18)}}的其他基金
Dimer systems with gaps and their connections with statistical physics, plane partitions, and alternating sign matrices
具有间隙的二聚体系统及其与统计物理、平面分区和交替符号矩阵的联系
- 批准号:
1501052 - 财政年份:2015
- 资助金额:
$ 17.82万 - 项目类别:
Continuing Grant
Dimer-mediated interaction of gaps in lattice graphs
格子图中间隙的二聚体介导的相互作用
- 批准号:
0801625 - 财政年份:2008
- 资助金额:
$ 17.82万 - 项目类别:
Continuing Grant
Asymptotic Enumeration of Tilings of Lattice Regions With Holes: A Finer Analysis Under Various Boundary Conditions
带孔晶格区域平铺的渐近枚举:各种边界条件下的更精细分析
- 批准号:
0500616 - 财政年份:2005
- 资助金额:
$ 17.82万 - 项目类别:
Continuing Grant
Asymptotic Enumeration of Perfect Matchings of Lattice Graphs
格图完美匹配的渐近枚举
- 批准号:
0100950 - 财政年份:2001
- 资助金额:
$ 17.82万 - 项目类别:
Continuing Grant
Enumeration of Perfect Matching of Graphs with Applications
图与应用完美匹配的枚举
- 批准号:
9802390 - 财政年份:1998
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
相似国自然基金
岩藻糖基化修饰调控GAPs介导的Treg-菌群稳态防止重症急性胰腺炎细菌易位的机制研究
- 批准号:JCZRQN202500102
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
人脑胶质瘤募集肿瘤相关巨噬细胞的机制研究
- 批准号:81402077
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
低氧对胶质瘤细胞极性和侵袭性的影响及调控机制
- 批准号:81372719
- 批准年份:2013
- 资助金额:16.0 万元
- 项目类别:面上项目
基因调控网络的鲁棒随机动力学分析与综合
- 批准号:60804028
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
针刺促进猫脊髓可塑性变化的分子基础-GAPs基因的表达
- 批准号:39400177
- 批准年份:1994
- 资助金额:5.0 万元
- 项目类别:青年科学基金项目
相似海外基金
BRIDGEGAP - Bridging the Gaps in Evidence, Regulation and Impact of Anticorruption Policies
BRIDGEGAP - 缩小反腐败政策的证据、监管和影响方面的差距
- 批准号:
10110711 - 财政年份:2024
- 资助金额:
$ 17.82万 - 项目类别:
EU-Funded
Global Governing Gaps and Accountability Traps for Solar Energy and Storage
太阳能和存储的全球治理差距和问责陷阱
- 批准号:
DP230103043 - 财政年份:2024
- 资助金额:
$ 17.82万 - 项目类别:
Discovery Projects
南極長期周回気球による暗黒物質探索実験GAPSの粒子識別性能向上の研究
提高南极长期轨道气球暗物质搜索实验GAPS粒子识别性能的研究
- 批准号:
24K17079 - 财政年份:2024
- 资助金额:
$ 17.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
- 批准号:
2420369 - 财政年份:2024
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Changing Institutions to Mitigate Gender Leadership Gaps: Power of Defaults
改变制度以缩小性别领导差距:违约的力量
- 批准号:
DP240101021 - 财政年份:2024
- 资助金额:
$ 17.82万 - 项目类别:
Discovery Projects
Addressing significant product safety knowledge gaps for older Australians
解决澳大利亚老年人在产品安全知识方面的重大差距
- 批准号:
DP240101533 - 财政年份:2024
- 资助金额:
$ 17.82万 - 项目类别:
Discovery Projects
Measuring inequality-driven skills gaps in the UK labour market
衡量英国劳动力市场中不平等驱动的技能差距
- 批准号:
ES/Z502443/1 - 财政年份:2024
- 资助金额:
$ 17.82万 - 项目类别:
Fellowship
Postdoctoral Fellowship: OPP-PRF: Investigating Polar Geomagnetic Signatures Associated with Substorm Onset to Address Data Gaps in Southern Hemisphere Space Weather Research
博士后奖学金:OPP-PRF:研究与亚暴爆发相关的极地地磁特征,以解决南半球空间天气研究中的数据差距
- 批准号:
2317994 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Collaborative Research: Joining the Global Bryophyte and Lichen TCN: Filling Gaps from Hawaii, Asia, and Oceania
合作研究:加入全球苔藓植物和地衣 TCN:填补夏威夷、亚洲和大洋洲的空白
- 批准号:
2240481 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Continuing Grant
Addressing the data gaps in comparative local public health research
解决地方公共卫生比较研究中的数据差距
- 批准号:
480902 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




