Reduction Methods in Hamiltonian Dynamics, Bifurcation Theory, and Lie Theory of Symplectomorphism Groups
哈密顿动力学、分岔理论和辛同态群李理论中的约简方法
基本信息
- 批准号:9802378
- 负责人:
- 金额:$ 8.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractProposal: DMS-9802378Principal Investigator: Tudor RatiuA first goal of this project is to use symplectic reduction theory andits extension involving singularities to the study of variousmechanical systems and coadjoint orbits of finite and infinitedimensional Lie groups. In addition, these techniques will be appliedto symmetric Hamiltonian bifurcation theory by combining them withmethods of dynamical systems and classical bifurcation theory methods.A Lagrangian counterpart of reduction will be developed, wheresymplectic geometry techniques are replaced by variational principles.Applications of these variational methods yield the equations ofvarious approximate models in geophysical fluid dynamics. A secondgoal of this project is to understand completions of diffeomorphismgroups with the scope of applying geometric and Lie theoreticalmethods to the study of nonlinear wave equations and the understandingof the convexity properties of the momentum map in infinitedimensions. A third goal is the application of methods of Hamiltoniandynamics in conjunction with singular reduction to study thebifurcation and the long term behavior of concrete mechanical systemssuch as the Riemann ellipsoids. The same methods are intended for thedesign and study of numerical algorithms on nonlinear manifolds.Symplectic methods in geometric mechanics are a powerful tool toaddress difficult questions in the dynamics of concrete problems suchas the control of submarine or robotic arm motion, the elaboration ofmodels for continuum systems such as rods and shells, or the study ofthe shape of liquid or gaseous masses ranging from tiny drops togalaxies. The development of the geometric foundations to attack theseproblems as well as their application to several problems comprisesthe work to be done on this grant.
项目负责人:Tudor ratia本项目的第一个目标是利用涉及奇异点的辛约简理论及其推广来研究有限维和无限维李群的各种力学系统和伴随轨道。此外,这些技术将与动力系统方法和经典分岔理论方法相结合,应用于对称哈密顿分岔理论。一个拉格朗日的对应化简将被发展,其中辛几何技术被变分原理所取代。这些变分方法的应用产生了地球物理流体动力学中各种近似模型的方程。本项目的第二个目标是通过应用几何和李理论方法来研究非线性波动方程和理解无限维动量映射的凹凸性来理解微分同态群的补全。第三个目标是应用哈密顿动力学方法,结合奇异约简来研究混凝土力学系统的分岔和长期行为,如黎曼椭球体。同样的方法也适用于设计和研究非线性流形上的数值算法。几何力学中的辛方法是解决具体动力学问题中的难题的有力工具,例如潜艇或机械臂运动的控制,棒状和壳状连续体系统模型的细化,或从微小液滴到星系的液体或气体质量形状的研究。解决这些问题的几何基础的发展,以及它们在几个问题上的应用,构成了本基金要做的工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tudor Ratiu其他文献
Tudor Ratiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tudor Ratiu', 18)}}的其他基金
Mathematical Sciences: Symplectic Methods in Bifuration Theory, Hamiltonian Dynamics, and Lie Theory
数学科学:分叉理论、哈密顿动力学和李理论中的辛方法
- 批准号:
9503273 - 财政年份:1995
- 资助金额:
$ 8.27万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Dynamics of Singular Reduction and SubRiemannian Geometry
数学科学:奇异约简动力学和亚黎曼几何
- 批准号:
9122708 - 财政年份:1992
- 资助金额:
$ 8.27万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Geometric Mechanics and Symplectic Geometry
数学科学:几何力学和辛几何专题
- 批准号:
8922699 - 财政年份:1990
- 资助金额:
$ 8.27万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8311674 - 财政年份:1983
- 资助金额:
$ 8.27万 - 项目类别:
Fellowship Award
Finite and Infinite Dimensional Completely Integrable Systems
有限和无限维完全可积系统
- 批准号:
8101642 - 财政年份:1981
- 资助金额:
$ 8.27万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
$ 8.27万 - 项目类别:
Continuing Grant
Hamiltonian Methods for Dispersive Fluids and Plasmas
色散流体和等离子体的哈密顿方法
- 批准号:
2154162 - 财政年份:2022
- 资助金额:
$ 8.27万 - 项目类别:
Standard Grant
Dynamical and Computer-Assisted Methods Applied to Hamiltonian Systems
应用于哈密顿系统的动力学和计算机辅助方法
- 批准号:
2138090 - 财政年份:2021
- 资助金额:
$ 8.27万 - 项目类别:
Fellowship Award
Robust quasi-Hamiltonian Monte Carlo Methods
鲁棒准哈密顿蒙特卡罗方法
- 批准号:
20H04149 - 财政年份:2020
- 资助金额:
$ 8.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Dynamical Systems Methods for Fluid Mechanics and Hamiltonian Mechanics
流体力学和哈密顿力学的动力系统方法
- 批准号:
1813384 - 财政年份:2018
- 资助金额:
$ 8.27万 - 项目类别:
Standard Grant
Dynamical and Statistical Methods Applied to Hamiltonian Systems
应用于哈密顿系统的动力学和统计方法
- 批准号:
1814543 - 财政年份:2018
- 资助金额:
$ 8.27万 - 项目类别:
Standard Grant
MORSE - Theoretical methods in Hamiltonian dynamics
莫尔斯 - 哈密顿动力学的理论方法
- 批准号:
380257369 - 财政年份:2017
- 资助金额:
$ 8.27万 - 项目类别:
Research Grants
Hamiltonian Methods in Oceanography
海洋学中的哈密顿方法
- 批准号:
495811-2016 - 财政年份:2016
- 资助金额:
$ 8.27万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Spectral and spectral collocation methods for Hamiltonian systems
哈密顿系统的谱和谱搭配方法
- 批准号:
1115530 - 财政年份:2011
- 资助金额:
$ 8.27万 - 项目类别:
Standard Grant
A study on the non-equilibrium statistical mechanics of particle methods based on Hamiltonian mechanics
基于哈密顿力学的粒子法非平衡统计力学研究
- 批准号:
23540166 - 财政年份:2011
- 资助金额:
$ 8.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)