Dynamical Systems Methods for Fluid Mechanics and Hamiltonian Mechanics

流体力学和哈密顿力学的动力系统方法

基本信息

  • 批准号:
    1813384
  • 负责人:
  • 金额:
    $ 25.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The investigator studies the behavior of partial differential equations and other infinite dimensional dynamical systems, and adapts and develops ideas originating in the study of finite-dimensional dynamics to make qualitative and quantitative predictions about the behavior of solutions of such systems. He focuses primarily on questions arising in physical applications. Among the questions he studies are the metastable behavior of fluid systems, whereby long-lived structures like vortices appear in the flow on a relatively short time scale, and then determine the subsequent evolution of the fluid for very long times. He also studies the influence of localized structures like vortices on the behavior of rotating, stratified fluid layers like the atmosphere. The differential equations arise in a variety of different physical contexts and are characterized by the fact that while the equations themselves are well known, they are too complicated to solve explicitly except in very special or physically unrealistic cases. Nevertheless, applications require at least a qualitative understanding of the behavior of their solutions; this research project aims to develop such an understanding. The project incorporates the training of graduate students and post-doctoral fellows into all facets of this research.Among the specific systems that the investigator studies are: (i) nearly inviscid fluids and weakly damped Hamiltonian systems like the Fermi-Pasta-Ulam system using normal forms and the theory of hypercoercivity; (ii) invariant manifolds and their implications for the behavior of: (a) unstably stratified, rotating fluid systems, (b) the compressible Navier-Stokes equations and (c) as a means of understanding the continuum approximation of kinetic systems, and (iii) small-divisors in fluid mechanics and other infinite dimensional systems. One feature that makes it difficult to apply dynamical systems ideas to partial differential equations on unbounded domains is the interplay of effects due to continuous spectrum with those coming from discrete spectrum. The planned work on stratified fluids and approximation theorems for kinetic systems further develops the theory of invariant manifolds to treat these problems. The study of small divisor problems in the vortex sheet equations extends KAM-like methods to a new class of infinite dimensional systems. The study of weakly viscous fluids and weakly damped oscillator systems both leads to a deeper intrinsic understanding of the origin of intermediate time scales in these systems and illuminates the mathematical relationships between these two apparently quite different physical systems. Graduate students and post-doctoral fellows are included in the work of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
研究者研究偏微分方程和其他无限维动力系统的行为,并适应和发展源自有限维动力学研究的思想,对这些系统的解的行为进行定性和定量预测。他主要关注物理应用中出现的问题。他研究的问题之一是流体系统的亚稳态行为,即像漩涡这样的长寿命结构在相对较短的时间尺度上出现在流动中,然后在很长时间内决定流体的后续演变。他还研究了局部结构(如漩涡)对旋转、分层流体层(如大气)行为的影响。微分方程出现在各种不同的物理环境中,其特点是虽然方程本身是众所周知的,但它们太复杂了,除非在非常特殊或物理上不现实的情况下才能明确地求解。然而,应用程序至少需要对其解决方案的行为有一个定性的理解;本研究项目旨在形成这样一种认识。该项目将研究生和博士后的培训纳入研究的各个方面。研究者研究的具体系统有:(i)几乎无粘流体和弱阻尼哈密顿系统,如使用范式和超矫顽力理论的费米-帕斯塔-乌拉姆系统;(ii)不变流形及其对以下行为的影响:(a)不稳定分层旋转流体系统;(b)可压缩的Navier-Stokes方程;(c)作为理解动力学系统连续统近似的一种手段;(iii)流体力学和其他无限维系统中的小因子。使动力系统思想难以应用于无界域上的偏微分方程的一个特征是连续谱与离散谱的相互作用。关于动力学系统的分层流体和近似定理的计划工作进一步发展了处理这些问题的不变流形理论。涡旋片方程小因子问题的研究将类kamm方法推广到一类新的无限维系统。对弱粘性流体和弱阻尼振子系统的研究,都使我们对这些系统中中间时间尺度的起源有了更深的内在理解,并阐明了这两个显然截然不同的物理系统之间的数学关系。本项目包括研究生和博士后。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Damped and driven breathers and metastability
  • DOI:
    10.1090/qam/1650
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Daniel A. Caballero;C. E. Wayne
  • 通讯作者:
    Daniel A. Caballero;C. E. Wayne
Decay of Hamiltonian Breathers Under Dissipation
哈密​​顿呼吸器在耗散下的衰变
  • DOI:
    10.1007/s00220-020-03848-4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Eckmann, Jean-Pierre;Wayne, C. Eugene
  • 通讯作者:
    Wayne, C. Eugene
Asymptotic Approximation of a Modified Compressible Navier-Stokes System
改进的可压缩纳维-斯托克斯系统的渐近逼近
Long-time approximations of small-amplitude, long-wavelength FPUT solutions
小幅度、长波长 FPUT 解的长时间近似
Exponential bound of the integral of Hermite functions product with Gaussian weight
Hermite 函数乘积积分与高斯权重的指数界
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clarence Wayne其他文献

Clarence Wayne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clarence Wayne', 18)}}的其他基金

Dynamical Systems Methods for Partial Differential Equations
偏微分方程的动力系统方法
  • 批准号:
    1311553
  • 财政年份:
    2013
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant
Infinite Dimensional Dynamical Systems and Partial Differential Equations
无限维动力系统和偏微分方程
  • 批准号:
    0908093
  • 财政年份:
    2009
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Special meeting: Dynamical systems and evolution equations, CRM
特别会议:动力系统和演化方程,CRM
  • 批准号:
    0803140
  • 财政年份:
    2008
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Workshop on Mathematical Hydrodynamics at the Steklov Institute; Moscow, Russia; June 12-17, 2006
斯特克洛夫研究所数学流体动力学研讨会;
  • 批准号:
    0543432
  • 财政年份:
    2005
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Dynamical Systems Approaches to Partial Differential Equations
偏微分方程的动力系统方法
  • 批准号:
    0103915
  • 财政年份:
    2001
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing grant
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9896208
  • 财政年份:
    1997
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9501226
  • 财政年份:
    1995
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学科学:数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9203359
  • 财政年份:
    1992
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学科学:数学物理中具有无限多个自由度的动力系统
  • 批准号:
    9002059
  • 财政年份:
    1990
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Ordered and Chaotic Motions in Hamiltonian Systems
数学科学:哈密顿系统中的有序运动和混沌运动
  • 批准号:
    8802118
  • 财政年份:
    1988
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Stabilization Methods for Dynamical Systems
动力系统的稳定方法
  • 批准号:
    2247553
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Dynamical and Computer-Assisted Methods Applied to Hamiltonian Systems
应用于哈密顿系统的动力学和计算机辅助方法
  • 批准号:
    2138090
  • 财政年份:
    2021
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Fellowship Award
Study of dynamical systems of random relaxed Newton methods
随机松弛牛顿法动力系统研究
  • 批准号:
    21K20323
  • 财政年份:
    2021
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Collaborative Research: Operator theoretic methods for identification and verification of dynamical systems
合作研究:动力系统识别和验证的算子理论方法
  • 批准号:
    2027999
  • 财政年份:
    2020
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Local dynamical response of inhomogeneous non-equilibrium soft matter systems studied by micro-imaging methods.
通过显微成像方法研究非均匀非平衡软物质系统的局部动力学响应。
  • 批准号:
    20H01873
  • 财政年份:
    2020
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applied Nonautonomous Dynamical Systems: Theory, Methods and Examples
应用非自主动力系统:理论、方法和实例
  • 批准号:
    EP/T018178/1
  • 财政年份:
    2020
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Research Grant
Collaborative Research: Operator theoretic methods for identification and verification of dynamical systems
合作研究:动力系统识别和验证的算子理论方法
  • 批准号:
    2028001
  • 财政年份:
    2020
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Engineering Bifurcations in High-Dimensional Dynamical Systems Using Isostable Reduction Methods
使用等稳定约简方法在高维动力系统中设计分岔
  • 批准号:
    1933583
  • 财政年份:
    2020
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Complementary study on dynamical systems and foliations using methods of partially ordered set and general topology
使用偏序集和一般拓扑方法对动力系统和叶状结构进行补充研究
  • 批准号:
    20K03583
  • 财政年份:
    2020
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Operator theoretic methods for identification and verification of dynamical systems
合作研究:动力系统识别和验证的算子理论方法
  • 批准号:
    2027976
  • 财政年份:
    2020
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了