Estimation and Computation for Multivariate Classification and Mixture Problems
多元分类和混合问题的估计和计算
基本信息
- 批准号:9802522
- 负责人:
- 金额:$ 6.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9802522Bernhard FluryThis research focuses on methods of classification in multivariate statistics, studying theoretical, practical, and computational aspects. The investigator explores finite mixture models with an "improper" component, i.e., a component in which each data point has the same density value. This leads to a flexible class of estimators that depend on the setting of a tuning parameter. For the extreme values of the tuning parameter, the resulting methods of estimation correspond to fully parametric maximum likelihood, and to nonparametric likelihood (empirical distribution function), respectively. The estimators are useful for contaminated data, and their performance is compared to traditional robust estimators. The main computational tool is an application of the EM algorithm. In another problem related to finite mixture analysis the investigator studies the question of dimensionality: if interest focuses on a subset of variables measured, should one use only that particular subsetfor the purpose of estimating the parameters of the mixture, or should one use the remaining variables ("covariates") as well? In addition, this research develops the asymptotic distribution theory for maximum likelihood estimators in multivariate models that are usually regarded as untractable by conventional methods (common canonical variates, partial common principal components, the discrimination subspace model, and others), and investigates iterative computational methods needed for estimating their parameters.Methods of classification play an increasingly important role in areas such as remote sensing, pattern and speech recognition, and taxonomy. The investigator studies methods of estimation and computation in multivariate situations, i.e., when many variables are measured on the same objects. In particular, the finite mixture model used in this research allows us to improve statistical methodology in situations where the data is distorted by errors and outliers. Efficient computational methods developed in this research allow us to exploit this powerful methodology, and to make it applicable to problems in many areas, including biotechnoloy and environmental sciences. Further research topics involve models of allometric growth in biology, improved estimation in unsupervised methods of classification, the development of efficient computational algorithms for recentlycreated multivariate methods of data analysis, and the analysis of periodic phenomena in biology.
9802522Bernhard Flury本研究侧重于多元统计中的分类方法,研究理论,实践和计算方面。 研究者探索了具有“不适当”成分的有限混合模型,即,其中每个数据点具有相同密度值的分量。 这导致了一个灵活的类的估计,依赖于调整参数的设置。 对于调整参数的极值,所得到的估计方法对应于完全参数最大似然,和非参数似然(经验分布函数),分别。 估计是有用的污染数据,和他们的性能相比,传统的鲁棒估计。 主要的计算工具是EM算法的应用。 在另一个问题有关的有限混合物分析的调查研究的问题的维度:如果兴趣集中在一个子集的变量测量,应该只使用特定的subsetfor估计参数的混合物的目的,还是应该使用剩余的变量(“协变量”)以及? 此外,本研究发展了通常被认为是难以处理的多元模型中最大似然估计量的渐近分布理论(共同典型变量、部分共同主成分、判别子空间模型等),分类方法在遥感等领域发挥着越来越重要的作用,传感、模式和语音识别以及分类学。 研究者研究多变量情况下的估计和计算方法,即,当在同一物体上测量许多变量时。特别是,在这项研究中使用的有限混合模型,使我们能够改善统计方法的情况下,数据被扭曲的错误和离群值。 在这项研究中开发的高效计算方法使我们能够利用这种强大的方法,并使其适用于许多领域的问题,包括生物技术和环境科学。 进一步的研究课题涉及生物学中的异速生长模型,改进无监督分类方法的估计,为最近创建的多变量数据分析方法开发有效的计算算法,以及生物学中周期现象的分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rabindra Bhattacharya其他文献
Rabindra Bhattacharya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rabindra Bhattacharya', 18)}}的其他基金
Nonparametric Statistical Image Analysis: Theory and Applications
非参数统计图像分析:理论与应用
- 批准号:
1811317 - 财政年份:2018
- 资助金额:
$ 6.42万 - 项目类别:
Continuing Grant
Nonparametric Statistics and Riemannian Geometry in Image Analysis: New Perspectives with Applications in Biology, Medicine, Neuroscience and Machine Vision
图像分析中的非参数统计和黎曼几何:在生物学、医学、神经科学和机器视觉中应用的新视角
- 批准号:
1406872 - 财政年份:2014
- 资助金额:
$ 6.42万 - 项目类别:
Continuing Grant
Collaborative Research: New directions in nonparametric inference on manifolds with applications to shapes and images
协作研究:流形非参数推理的新方向及其在形状和图像中的应用
- 批准号:
1107053 - 财政年份:2011
- 资助金额:
$ 6.42万 - 项目类别:
Continuing Grant
Collaborative Research: Nonparametric Theory on Manifolds of Shapes and Images, with Applications to Biology, Medical Imaging and Machine Vision
合作研究:形状和图像流形的非参数理论及其在生物学、医学成像和机器视觉中的应用
- 批准号:
0806011 - 财政年份:2008
- 资助金额:
$ 6.42万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Analysis on Manifolds: A Nonparametric Approach for Shapes and Images
合作研究:流形统计分析:形状和图像的非参数方法
- 批准号:
0406143 - 财政年份:2004
- 资助金额:
$ 6.42万 - 项目类别:
Continuing Grant
Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations
合作研究:与纳维斯托克斯方程相关的随机和多尺度结构
- 批准号:
0244485 - 财政年份:2002
- 资助金额:
$ 6.42万 - 项目类别:
Standard Grant
Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations
合作研究:与纳维斯托克斯方程相关的随机和多尺度结构
- 批准号:
0073865 - 财政年份:2000
- 资助金额:
$ 6.42万 - 项目类别:
Standard Grant
Mathematical Sciences: Multiscale Processes and Stochastic Dynamics in Geosciences
数学科学:地球科学中的多尺度过程和随机动力学
- 批准号:
9504557 - 财政年份:1995
- 资助金额:
$ 6.42万 - 项目类别:
Continuing Grant
Scientific Visit to the Indian Statistical Institute in Calcutta and Delhi -Travel Award in Indian Currency
对位于加尔各答和德里的印度统计研究所进行科学访问-印度货币旅行奖
- 批准号:
9319620 - 财政年份:1994
- 资助金额:
$ 6.42万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Stochastic Models
数学科学:非线性随机模型
- 批准号:
9206937 - 财政年份:1992
- 资助金额:
$ 6.42万 - 项目类别:
Continuing Grant
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Continuing Grant
Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
- 批准号:
2400056 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Continuing Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Research Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036778/1 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Research Grant
CAREER: Elastic Intermittent Computation Enabling Batteryless Edge Intelligence
职业:弹性间歇计算实现无电池边缘智能
- 批准号:
2339193 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Continuing Grant
Probing Electrochemical Interface in CO2 reduction by Operando Computation
通过操作计算探测二氧化碳还原中的电化学界面
- 批准号:
DE240100846 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Discovery Early Career Researcher Award
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036867/1 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Research Grant
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
- 批准号:
2340095 - 财政年份:2024
- 资助金额:
$ 6.42万 - 项目类别:
Continuing Grant