Collaborative Research: New directions in nonparametric inference on manifolds with applications to shapes and images
协作研究:流形非参数推理的新方向及其在形状和图像中的应用
基本信息
- 批准号:1107053
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Projective shapes of 3D configurations, not their Kendall type similarity shapes, are the most appropriate objects for general image analysis in machine vision and robotics. The present project will develop registration free nonparametric inference by constructing an appropriate equivariant embedding of the full projective shape manifold, and by providing two-sample and multi-sample inference procedures based on the extrinsic mean under the embedding. On the other hand, data analysis on size-and-shape reflection-similarity manifolds are important in virtual reconstructions of proteins and of various configurations of bone structures in humans. Another focus of the project is on certain special spaces which are not manifolds, but are spaces with manifold stratification, and which arise in many applications, e.g., in geometric representations of phylogenetic trees. Apart from the landmarks based shape analysis as described above, continuous shapes such as given by boundary contours in 2D will be investigated as elements of infinite dimemsional (Hilbert) manifolds. Finally, proposed nonparametric Bayesian procedures for density estimation, regression and classification on shape manifolds will be a significant point of departure from nonparametric inference based so far primarily on Fre'chet means and dispersions. Together these projects aim at providing comprehensive robust procedures for shapes which are of wide applicability in many fields of science and technology.Digital images today play a vital role in science and technology, in intelligence gathering and defense, and in many aspects of everyday life. The present proposal seeks to advance the analysis of digital camera images via the statistical study of shapes and other non-Euclidean objects. Nonparametric statistical methods developed by the PIs and others over the past twelve years have had a significant impact on statistical inference for 3D scene recognition from regular digital cameras, on medical diagnostics, and on many other forms of image analysis. The proposal aims not only to consolidate this theory. The objective is also to develop new methodologies for machine vision and robotics, for dynamic scene recognition, for medical diagnostics from CT scans for planning reconstructive surgery for the severely injured, and for the detection of elusive health impairments from DNA sequences via shape configurations of proteins.
3D构型的投影形状,而不是它们的Kendall类型相似形状,是机器视觉和机器人学中最适合进行一般图像分析的对象。本项目将通过构造完全射影形状流形的适当等变嵌入,并在嵌入下提供基于外均值的两样本和多样本推理过程,来发展无需注册的非参数推理。另一方面,对大小和形状反射相似流形的数据分析在虚拟重建蛋白质和人类各种骨骼结构的过程中非常重要。该项目的另一个重点是某些特殊空间,这些空间不是流形,而是具有流形分层的空间,并且在许多应用中出现,例如在系统发育树的几何表示中。除了上述基于地标的形状分析之外,将把由2D中的边界轮廓给出的连续形状作为无限维(Hilbert)流形的元素来研究。最后,提出的形状流形上的密度估计、回归和分类的非参数贝叶斯方法将是迄今为止主要基于Fre‘chet均值和离散度的非参数推断的一个重要起点。这些项目旨在为形状提供全面而坚固的程序,这些形状在许多科学和技术领域都具有广泛的适用性。今天的数字图像在科学和技术、情报收集和防御以及日常生活的许多方面发挥着至关重要的作用。本提案旨在通过对形状和其他非欧几里得物体的统计研究来推进数码相机图像的分析。在过去的12年里,PI和其他人开发的非参数统计方法对来自常规数码相机的3D场景识别的统计推断、医疗诊断以及许多其他形式的图像分析产生了重大影响。该提案的目的不仅是巩固这一理论。其目标也是开发机器视觉和机器人学的新方法,用于动态场景识别,用于CT扫描的医疗诊断,用于规划严重伤者的重建手术,以及通过蛋白质的形状配置从DNA序列中检测难以捉摸的健康损害。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rabindra Bhattacharya其他文献
Rabindra Bhattacharya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rabindra Bhattacharya', 18)}}的其他基金
Nonparametric Statistical Image Analysis: Theory and Applications
非参数统计图像分析:理论与应用
- 批准号:
1811317 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Nonparametric Statistics and Riemannian Geometry in Image Analysis: New Perspectives with Applications in Biology, Medicine, Neuroscience and Machine Vision
图像分析中的非参数统计和黎曼几何:在生物学、医学、神经科学和机器视觉中应用的新视角
- 批准号:
1406872 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Collaborative Research: Nonparametric Theory on Manifolds of Shapes and Images, with Applications to Biology, Medical Imaging and Machine Vision
合作研究:形状和图像流形的非参数理论及其在生物学、医学成像和机器视觉中的应用
- 批准号:
0806011 - 财政年份:2008
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Analysis on Manifolds: A Nonparametric Approach for Shapes and Images
合作研究:流形统计分析:形状和图像的非参数方法
- 批准号:
0406143 - 财政年份:2004
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations
合作研究:与纳维斯托克斯方程相关的随机和多尺度结构
- 批准号:
0244485 - 财政年份:2002
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations
合作研究:与纳维斯托克斯方程相关的随机和多尺度结构
- 批准号:
0073865 - 财政年份:2000
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Estimation and Computation for Multivariate Classification and Mixture Problems
多元分类和混合问题的估计和计算
- 批准号:
9802522 - 财政年份:1998
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: Multiscale Processes and Stochastic Dynamics in Geosciences
数学科学:地球科学中的多尺度过程和随机动力学
- 批准号:
9504557 - 财政年份:1995
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Scientific Visit to the Indian Statistical Institute in Calcutta and Delhi -Travel Award in Indian Currency
对位于加尔各答和德里的印度统计研究所进行科学访问-印度货币旅行奖
- 批准号:
9319620 - 财政年份:1994
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Stochastic Models
数学科学:非线性随机模型
- 批准号:
9206937 - 财政年份:1992
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315699 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346230 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant