Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations

合作研究:与纳维斯托克斯方程相关的随机和多尺度结构

基本信息

  • 批准号:
    0244485
  • 负责人:
  • 金额:
    $ 2.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

This project will develop the theory of the motion of fluids as embodied by the Navier-Stokes equations using new probabilistic methods that exploit the power of stochastic calculus and probabilistic limit theory. Although the Navier-Stokes equations are essentially deterministic, the approach used in this work will build on a representation of the equations as a functional of an underlying branching random walk. This representation, which was recently discovered by LeJan and Sznitman in France, is clearly intrinsic to the structure of the Navier-Stokes equations. While this is not the first attempt to use stochastic methods in connection with the flows associated with the Navier-Stokes equations, it does represent an entirely new direction which has the potential to transcend much of existing theory. Specific problems considered in this proposal seek to provide a better understanding of the role of spatial dimensions, boundary conditions, multi-scaling exponents and singularities, viscosity, homogeneity, isotropy and rotational accelerations, stationary flows and long-time evolution. The Navier-Stokes equations describe the basic physics governing the motion of fluid in its various forms of air, water, oil, etc. As such these equations play a fundamental role in science and engineering through the modeling of all varieties of fluid flow, from atmospheric and oceanic circulation to the flow of water beneath the earth's surface. Improved understanding of these equations and their solutions is essential to applications which range from tracking climate change and dispersion of contaminants in the Earth's environment, to more stable aerospace and sea vessel designs. The nonlinearity inherent in these equations makes explicit solutions possible only for the simplest of flows. Consequently the development of a more complete understanding of these equations at all physical length scales ranks among the most important outstanding problems of contemporary mathematical physics
本项目将利用新的概率方法,利用随机微积分和概率极限理论的力量,发展纳维尔-斯托克斯方程所体现的流体运动理论。虽然Navier-Stokes方程基本上是确定性的,但在这项工作中使用的方法将建立在方程的表示上,作为底层分支随机行走的函数。这种表示法是最近由法国的LeJan和Sznitman发现的,它显然是Navier-Stokes方程结构的固有性质。虽然这不是第一次尝试使用随机方法来处理与Navier-Stokes方程相关的流动,但它确实代表了一个全新的方向,有可能超越现有的大部分理论。本提案中考虑的具体问题旨在更好地了解空间维度、边界条件、多尺度指数和奇点、粘性、均匀性、各向同性和旋转加速度、静止流和长期演变的作用。Navier-Stokes方程描述了控制空气、水、油等各种形式的流体运动的基本物理学。因此,这些方程通过对各种流体流动(从大气和海洋环流到地球表面下的水流)进行建模,在科学和工程中发挥着重要作用。提高对这些方程及其解的理解对于从跟踪气候变化和地球环境中污染物的扩散到更稳定的航空航天和海洋船舶设计等应用至关重要。这些方程中固有的非线性使得只有最简单的流动才可能得到显式解。因此,在所有物理长度尺度上更完整地理解这些方程的发展是当代数学物理学最重要的突出问题之一

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rabindra Bhattacharya其他文献

Rabindra Bhattacharya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rabindra Bhattacharya', 18)}}的其他基金

Nonparametric Statistical Image Analysis: Theory and Applications
非参数统计图像分析:理论与应用
  • 批准号:
    1811317
  • 财政年份:
    2018
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Continuing Grant
Nonparametric Statistics and Riemannian Geometry in Image Analysis: New Perspectives with Applications in Biology, Medicine, Neuroscience and Machine Vision
图像分析中的非参数统计和黎曼几何:在生物学、医学、神经科学和机器视觉中应用的新视角
  • 批准号:
    1406872
  • 财政年份:
    2014
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: New directions in nonparametric inference on manifolds with applications to shapes and images
协作研究:流形非参数推理的新方向及其在形状和图像中的应用
  • 批准号:
    1107053
  • 财政年份:
    2011
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nonparametric Theory on Manifolds of Shapes and Images, with Applications to Biology, Medical Imaging and Machine Vision
合作研究:形状和图像流形的非参数理论及其在生物学、医学成像和机器视觉中的应用
  • 批准号:
    0806011
  • 财政年份:
    2008
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Analysis on Manifolds: A Nonparametric Approach for Shapes and Images
合作研究:流形统计分析:形状和图像的非参数方法
  • 批准号:
    0406143
  • 财政年份:
    2004
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations
合作研究:与纳维斯托克斯方程相关的随机和多尺度结构
  • 批准号:
    0073865
  • 财政年份:
    2000
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
Estimation and Computation for Multivariate Classification and Mixture Problems
多元分类和混合问题的估计和计算
  • 批准号:
    9802522
  • 财政年份:
    1998
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Multiscale Processes and Stochastic Dynamics in Geosciences
数学科学:地球科学中的多尺度过程和随机动力学
  • 批准号:
    9504557
  • 财政年份:
    1995
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Continuing Grant
Scientific Visit to the Indian Statistical Institute in Calcutta and Delhi -Travel Award in Indian Currency
对位于加尔各答和德里的印度统计研究所进行科学访问-印度货币旅行奖
  • 批准号:
    9319620
  • 财政年份:
    1994
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Stochastic Models
数学科学:非线性随机模型
  • 批准号:
    9206937
  • 财政年份:
    1992
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Continuing Grant

相似国自然基金

针刺协同化疗联合免疫检查点抑制剂治疗EGFR突变阳性晚期NSCLC的多中心随机对照临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
400km/h 高速铁路无砟轨道路基随机动力响应与路桥过渡段性能协同演化机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
计及多源不确定性的电动汽车与智能配网协同运行优化及激励机制 研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
随机动态网络下车辆编队协同控制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
计及风电备用湍流影响机理的源网协同优化调度方法研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
考虑风力机疲劳荷载的海上风电场协同优化研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
随机动态网络下异质车辆队列横纵向协同控制研究
  • 批准号:
    52302488
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向算力网络的随机工作流泛在协同调度研究
  • 批准号:
    62302095
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑交通流随机延迟传播特性的车—路—网耦合运行机理与协同优化方法研究
  • 批准号:
    52307100
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
时空随机耦合下规模化分布式资源动态聚合与梯级协同调控方法研究
  • 批准号:
    52377095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337426
  • 财政年份:
    2024
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325184
  • 财政年份:
    2023
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226347
  • 财政年份:
    2023
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229345
  • 财政年份:
    2023
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226348
  • 财政年份:
    2023
  • 资助金额:
    $ 2.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了