Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations
合作研究:与纳维斯托克斯方程相关的随机和多尺度结构
基本信息
- 批准号:0244485
- 负责人:
- 金额:$ 2.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2004-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop the theory of the motion of fluids as embodied by the Navier-Stokes equations using new probabilistic methods that exploit the power of stochastic calculus and probabilistic limit theory. Although the Navier-Stokes equations are essentially deterministic, the approach used in this work will build on a representation of the equations as a functional of an underlying branching random walk. This representation, which was recently discovered by LeJan and Sznitman in France, is clearly intrinsic to the structure of the Navier-Stokes equations. While this is not the first attempt to use stochastic methods in connection with the flows associated with the Navier-Stokes equations, it does represent an entirely new direction which has the potential to transcend much of existing theory. Specific problems considered in this proposal seek to provide a better understanding of the role of spatial dimensions, boundary conditions, multi-scaling exponents and singularities, viscosity, homogeneity, isotropy and rotational accelerations, stationary flows and long-time evolution. The Navier-Stokes equations describe the basic physics governing the motion of fluid in its various forms of air, water, oil, etc. As such these equations play a fundamental role in science and engineering through the modeling of all varieties of fluid flow, from atmospheric and oceanic circulation to the flow of water beneath the earth's surface. Improved understanding of these equations and their solutions is essential to applications which range from tracking climate change and dispersion of contaminants in the Earth's environment, to more stable aerospace and sea vessel designs. The nonlinearity inherent in these equations makes explicit solutions possible only for the simplest of flows. Consequently the development of a more complete understanding of these equations at all physical length scales ranks among the most important outstanding problems of contemporary mathematical physics
该项目将使用新的概率方法来开发流体运动的运动理论,这些方法由Navier-Stokes方程所体现,从而利用随机演算的力量和概率极限理论。尽管Navier-Stokes方程本质上是确定性的,但本工作中使用的方法将以方程式为基础分支随机步行的功能建立。这种表示形式最近由法国的Lejan和Sznitman发现,显然是Navier-Stokes方程的结构。尽管这不是与与Navier-Stokes方程相关的流进行随机方法的首次尝试,但它确实代表了一个全新的方向,有可能超越现有理论。本提案中考虑的具体问题旨在更好地理解空间维度,边界条件,多尺度指数和奇异性,粘度,同质性,各向同性和旋转加速度,固定流量和长期进化的作用。 Navier-Stokes方程描述了液体以各种形式的空气,水,油等的运动的基本物理学。因此,通过建模各种流体流量,从大气和海洋循环到地面以下水流的流动,这些方程在科学和工程中起着基本作用。对这些方程式及其解决方案的理解提高了,对于从跟踪气候变化和地球环境中污染物的分散到更稳定的航空航天和海船设计的应用至关重要。这些方程式固有的非线性使得明确的解决方案仅对最简单的流量而成为可能。因此,在所有物理长度尺度上,对这些方程式的更全面理解是当代数学物理学最重要的问题之一
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rabindra Bhattacharya其他文献
Rabindra Bhattacharya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rabindra Bhattacharya', 18)}}的其他基金
Nonparametric Statistical Image Analysis: Theory and Applications
非参数统计图像分析:理论与应用
- 批准号:
1811317 - 财政年份:2018
- 资助金额:
$ 2.36万 - 项目类别:
Continuing Grant
Nonparametric Statistics and Riemannian Geometry in Image Analysis: New Perspectives with Applications in Biology, Medicine, Neuroscience and Machine Vision
图像分析中的非参数统计和黎曼几何:在生物学、医学、神经科学和机器视觉中应用的新视角
- 批准号:
1406872 - 财政年份:2014
- 资助金额:
$ 2.36万 - 项目类别:
Continuing Grant
Collaborative Research: New directions in nonparametric inference on manifolds with applications to shapes and images
协作研究:流形非参数推理的新方向及其在形状和图像中的应用
- 批准号:
1107053 - 财政年份:2011
- 资助金额:
$ 2.36万 - 项目类别:
Continuing Grant
Collaborative Research: Nonparametric Theory on Manifolds of Shapes and Images, with Applications to Biology, Medical Imaging and Machine Vision
合作研究:形状和图像流形的非参数理论及其在生物学、医学成像和机器视觉中的应用
- 批准号:
0806011 - 财政年份:2008
- 资助金额:
$ 2.36万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Analysis on Manifolds: A Nonparametric Approach for Shapes and Images
合作研究:流形统计分析:形状和图像的非参数方法
- 批准号:
0406143 - 财政年份:2004
- 资助金额:
$ 2.36万 - 项目类别:
Continuing Grant
Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations
合作研究:与纳维斯托克斯方程相关的随机和多尺度结构
- 批准号:
0073865 - 财政年份:2000
- 资助金额:
$ 2.36万 - 项目类别:
Standard Grant
Estimation and Computation for Multivariate Classification and Mixture Problems
多元分类和混合问题的估计和计算
- 批准号:
9802522 - 财政年份:1998
- 资助金额:
$ 2.36万 - 项目类别:
Standard Grant
Mathematical Sciences: Multiscale Processes and Stochastic Dynamics in Geosciences
数学科学:地球科学中的多尺度过程和随机动力学
- 批准号:
9504557 - 财政年份:1995
- 资助金额:
$ 2.36万 - 项目类别:
Continuing Grant
Scientific Visit to the Indian Statistical Institute in Calcutta and Delhi -Travel Award in Indian Currency
对位于加尔各答和德里的印度统计研究所进行科学访问-印度货币旅行奖
- 批准号:
9319620 - 财政年份:1994
- 资助金额:
$ 2.36万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Stochastic Models
数学科学:非线性随机模型
- 批准号:
9206937 - 财政年份:1992
- 资助金额:
$ 2.36万 - 项目类别:
Continuing Grant
相似国自然基金
随机分布序列互联系统的协作容错控制研究
- 批准号:61903238
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
用户移动状态下的5G超密集异构网络自优化技术研究
- 批准号:61871045
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
毫米波用户热点区域携能中继方法研究
- 批准号:61871387
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
基于平流层平台的空地一体化网络高效传输理论与方法研究
- 批准号:61771358
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
基于能量信标的无线供电通信系统关键技术研究
- 批准号:61701168
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 2.36万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 2.36万 - 项目类别:
Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
$ 2.36万 - 项目类别:
Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337426 - 财政年份:2024
- 资助金额:
$ 2.36万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 2.36万 - 项目类别:
Standard Grant