Collaborative Research: Statistical Analysis on Manifolds: A Nonparametric Approach for Shapes and Images

合作研究:流形统计分析:形状和图像的非参数方法

基本信息

  • 批准号:
    0406143
  • 负责人:
  • 金额:
    $ 16.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

The shape or image of an object may be recorded digitally by a finite number k of landmarks or positions on the object, called a k-ad. The space of orbits under rotation and translation of k-ads is the size-and-shape space. If one includes scaling with rotation and translation, then the space of orbits under the resulting group of transformations on the k-adsis the shape space. These are examples of Riemannian manifolds, some with singularities. One approach proposed here for inference about a distribution on a general differentiable or Riemannian manifold M, based on a random sample from it, is to carry out a multivariate analysis of the image under the so-called Log map on one or more tangent spaces to M. Apart from this intrinsic approach, less computation intensive extrinsic procedures based on embeddings in Euclidean spaces are investigated. The project explores consistency and asymptotic distribution theory on manifolds for robust tests and confidence regions from both points of view--intrinsic and extrinsic. One motivation for this study comes from the need to identify deformations or shape changes for purposes of medical diagnosis and biomorphology. Immediate applications also arise to machine vision and pattern recognition. There are significant impacts of this research on these and many other fields. Another important goal of this project is to train students in the newly developed methodologies, leading to the dissemination of knowledge gained through this research and the creation of a body of technicians and experts to apply it.
对象的形状或图像可以通过对象上的有限数量k个界标或位置(称为k-ad)来数字地记录。k-ads在旋转和平移下的轨道空间是大小和形状空间。如果一个包括旋转和平移的缩放,那么在k-adis上的结果变换组下的轨道空间是形状空间。这些是黎曼流形的例子,有些带有奇点。这里提出的一种方法是基于一个随机样本来推断一般可微流形或黎曼流形M上的分布,即在一个或多个M的切空间上的所谓对数映射下对图像进行多变量分析。除了这种内在的方法,较少的计算密集型的外部程序的基础上嵌入在欧几里得空间进行了研究。该项目从内在和外在两个角度探讨了流形上的一致性和渐近分布理论,用于稳健测试和置信区域。 这项研究的一个动机来自于需要识别医疗诊断和生物形态学目的的变形或形状变化。机器视觉和模式识别也有直接的应用。这项研究对这些领域和许多其他领域产生了重大影响。该项目的另一个重要目标是培训学生掌握新开发的方法,从而传播通过这项研究获得的知识,并建立一个应用这些知识的技术人员和专家队伍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rabindra Bhattacharya其他文献

Rabindra Bhattacharya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rabindra Bhattacharya', 18)}}的其他基金

Nonparametric Statistical Image Analysis: Theory and Applications
非参数统计图像分析:理论与应用
  • 批准号:
    1811317
  • 财政年份:
    2018
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
Nonparametric Statistics and Riemannian Geometry in Image Analysis: New Perspectives with Applications in Biology, Medicine, Neuroscience and Machine Vision
图像分析中的非参数统计和黎曼几何:在生物学、医学、神经科学和机器视觉中应用的新视角
  • 批准号:
    1406872
  • 财政年份:
    2014
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: New directions in nonparametric inference on manifolds with applications to shapes and images
协作研究:流形非参数推理的新方向及其在形状和图像中的应用
  • 批准号:
    1107053
  • 财政年份:
    2011
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nonparametric Theory on Manifolds of Shapes and Images, with Applications to Biology, Medical Imaging and Machine Vision
合作研究:形状和图像流形的非参数理论及其在生物学、医学成像和机器视觉中的应用
  • 批准号:
    0806011
  • 财政年份:
    2008
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations
合作研究:与纳维斯托克斯方程相关的随机和多尺度结构
  • 批准号:
    0244485
  • 财政年份:
    2002
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations
合作研究:与纳维斯托克斯方程相关的随机和多尺度结构
  • 批准号:
    0073865
  • 财政年份:
    2000
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
Estimation and Computation for Multivariate Classification and Mixture Problems
多元分类和混合问题的估计和计算
  • 批准号:
    9802522
  • 财政年份:
    1998
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Multiscale Processes and Stochastic Dynamics in Geosciences
数学科学:地球科学中的多尺度过程和随机动力学
  • 批准号:
    9504557
  • 财政年份:
    1995
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
Scientific Visit to the Indian Statistical Institute in Calcutta and Delhi -Travel Award in Indian Currency
对位于加尔各答和德里的印度统计研究所进行科学访问-印度货币旅行奖
  • 批准号:
    9319620
  • 财政年份:
    1994
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Stochastic Models
数学科学:非线性随机模型
  • 批准号:
    9206937
  • 财政年份:
    1992
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
  • 批准号:
    2242084
  • 财政年份:
    2023
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了