Nonparametric Statistics and Riemannian Geometry in Image Analysis: New Perspectives with Applications in Biology, Medicine, Neuroscience and Machine Vision

图像分析中的非参数统计和黎曼几何:在生物学、医学、神经科学和机器视觉中应用的新视角

基本信息

  • 批准号:
    1406872
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

This project aims at (1) precise geometric depictions of digital images arising in biology, medicine, machine vision and other fields of science and engineering and (2) providing their model-independent statistical analysis for purposes of identification, discrimination and diagnostics. One specific application is to discriminate between a normal organ and a diseased one in the human body. Among examples, one may refer to the diagnosis of glaucoma and certain types of schizophrenia based on shape changes. A subject that the project will especially look at and analyze in depth, concerns changes in the geometric structure of the white matter in the brain's cortex brought about by Parkinson's disease, Alzheimers, schizophrenia, autism, etc., and their progression. Important applications in the fields of graphics, robotics, etc., will be explored as well.Advancements in imaging technology enable scientists and medical professionals today to view the inner functioning of organs at the cell level and beyond. For example, in the white matter in the cortex, the coefficients of the 3x3 diffusion matrix of water molecules can be measured. In the absence of a disease or trauma, these matrices show pronounced anisotropy along well organized neural structures, while perturbations due to a disease lead to a decrease in anisotropy in each such location. This is one aspect of the structural change due to a disease that is visible in the diffusion tensor imaging scans. There are others. So far there is no statistical methodology that can precisely associate such a decrease in anisotropy with the particular disease that causes it. The present project will represent the main neural structures in the white matter in terms of elements of a Riemannian manifold and their geodesics. As one specific task, the project will choose appropriate metric tensors on the space of alignments of positive definite matrices along neural structures. The broad goal is to provide a nonparametric statistical methodology based on Fre'chet means for discrimination and diagnostics, extending much further and in novel directions the research that was carried out under earlier NSF supports. In a completely different direction, one theoretical objective of the project is to provide broad conditions for uniqueness of the Fre'chet mean under a geodesic distance. Such conditions are required for statistical applications but are unavailable in adequate generality for Riemannian manifolds with positive curvature. This matter of uniqueness also has surprising implications, for graphics and robotics.
该项目旨在(1)生物学,医学,机器视觉和其他科学和工程领域中出现的数字图像的精确几何转换,以及(2)提供其模型无关的统计分析,用于识别,区分和诊断。一个具体的应用是区分人体中的正常器官和病变器官。在示例中,可以指基于形状变化的青光眼和某些类型的精神分裂症的诊断。该项目将特别深入研究和分析的一个主题,涉及帕金森病、老年痴呆症、精神分裂症、自闭症等引起的大脑皮层白色物质几何结构的变化,和他们的进步。 图形学、机器人等领域的重要应用,成像技术的进步使今天的科学家和医学专业人员能够在细胞水平和更高的水平上观察器官的内部功能。 例如,在皮质中的白色物质中,可以测量水分子的3 × 3扩散矩阵的系数。 在没有疾病或创伤的情况下,这些基质沿着组织良好的神经结构显示出明显的各向异性,而由于疾病引起的扰动导致每个这样的位置的各向异性降低。这是弥散张量成像扫描中可见的疾病引起的结构变化的一个方面。还有其他人。 到目前为止,还没有统计方法可以精确地将这种各向异性的减少与引起它的特定疾病联系起来。本项目将用黎曼流形的元素及其测地线来表示白色物质中的主要神经结构。作为一个具体的任务,该项目将选择适当的度量张量的空间上的对齐的正定矩阵沿着神经结构。广泛的目标是提供一个非参数的统计方法的基础上弗雷切特手段的歧视和诊断,进一步扩展和新的方向的研究,进行了早期的NSF支持。在一个完全不同的方向,该项目的一个理论目标是提供广泛的条件下的唯一性的弗雷谢平均测地距离。这样的条件对于统计应用是必需的,但对于具有正曲率的黎曼流形来说,在足够的普遍性中是不可用的。 这种独特性对图形学和机器人技术也有着令人惊讶的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rabindra Bhattacharya其他文献

Rabindra Bhattacharya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rabindra Bhattacharya', 18)}}的其他基金

Nonparametric Statistical Image Analysis: Theory and Applications
非参数统计图像分析:理论与应用
  • 批准号:
    1811317
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: New directions in nonparametric inference on manifolds with applications to shapes and images
协作研究:流形非参数推理的新方向及其在形状和图像中的应用
  • 批准号:
    1107053
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nonparametric Theory on Manifolds of Shapes and Images, with Applications to Biology, Medical Imaging and Machine Vision
合作研究:形状和图像流形的非参数理论及其在生物学、医学成像和机器视觉中的应用
  • 批准号:
    0806011
  • 财政年份:
    2008
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Analysis on Manifolds: A Nonparametric Approach for Shapes and Images
合作研究:流形统计分析:形状和图像的非参数方法
  • 批准号:
    0406143
  • 财政年份:
    2004
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations
合作研究:与纳维斯托克斯方程相关的随机和多尺度结构
  • 批准号:
    0244485
  • 财政年份:
    2002
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Stochastic and Multiscale Structure Associated with the Navier Stokes Equations
合作研究:与纳维斯托克斯方程相关的随机和多尺度结构
  • 批准号:
    0073865
  • 财政年份:
    2000
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Estimation and Computation for Multivariate Classification and Mixture Problems
多元分类和混合问题的估计和计算
  • 批准号:
    9802522
  • 财政年份:
    1998
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Multiscale Processes and Stochastic Dynamics in Geosciences
数学科学:地球科学中的多尺度过程和随机动力学
  • 批准号:
    9504557
  • 财政年份:
    1995
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Scientific Visit to the Indian Statistical Institute in Calcutta and Delhi -Travel Award in Indian Currency
对位于加尔各答和德里的印度统计研究所进行科学访问-印度货币旅行奖
  • 批准号:
    9319620
  • 财政年份:
    1994
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Stochastic Models
数学科学:非线性随机模型
  • 批准号:
    9206937
  • 财政年份:
    1992
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant

相似海外基金

REU Site: DRUMS Directed Research for Undergraduates in Math and Statistics
REU 网站:DRUMS 为数学和统计学本科生指导的研究
  • 批准号:
    2349611
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Computational Statistics to Tackle Modern Slavery
解决现代奴隶制问题的计算统计
  • 批准号:
    MR/X034992/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Fellowship
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
  • 批准号:
    2340482
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
  • 批准号:
    EP/X042812/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Fellowship
MRC International Statistics & Epidemiology Partnership (ISEP): Strengthening capacity in applied medical statisticians in sub-Saharan Africa
MRC国际统计
  • 批准号:
    MR/X019888/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Conference: Statistics in the Age of AI
会议:人工智能时代的统计
  • 批准号:
    2349991
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Conference: The 2024 Joint Research Conference on Statistics in Quality, Industry, and Technology (JRC 2024) - Data Science and Statistics for Industrial Innovation
会议:2024年质量、工业和技术统计联合研究会议(JRC 2024)——数据科学与统计促进产业创新
  • 批准号:
    2404998
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Network Statistics of Rupturing Foams
LEAPS-MPS:破裂泡沫的网络统计
  • 批准号:
    2316289
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了