Imputation and Variance Estimation for Survey Data

调查数据的插补和方差估计

基本信息

  • 批准号:
    9803112
  • 负责人:
  • 金额:
    $ 5.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-08-01 至 2002-07-31
  • 项目状态:
    已结题

项目摘要

9803112 Jun ShaoThis research involves development of imputation techniques and variance estimation methods for survey data with nonrespondents. The investigator focues on (1) validating and comparing (both theoretically and empirically) the existing imputation techniques and developing better procedures if necessary; and (2) developing correct variance estimators for a given imputation method that produces correct survey estimates. Special attention will be paid on random hot deck imputation using models, nearest neighbor imputation, cold deck imputation, multivariate imputation, longitudinal imputation, imputation for quantiles, and imputation for non-ignorable response. Many variance estimation techniques (such as the linearization/Taylor expansion, jackknife, balanced half sample or balanced repeated replication, random groups, and bootstrap) will be studied. Particular issues that will be addressed in variance estimation include non-negligible sampling fractions, approximation in applying replication methods (such as grouping and collapsing), complex and composite imputation methods (in the sense that a number of different imputation methods are used and/or imputed data are used to impute nonrespondents for other variables), variance estimation for nearest neighbor imputation, variance estimation for sample quantiles, and problems with imputed values that cannot be identified from the data set.Most surveys have nonrespondents. Item nonresponse occurs when some sampled units cooperate in the survey but fail to provide answers to some questions. Commonly used compensation procedures for handling item nonresponse are imputation techniques which insert values for nonrespondents. It is a common practice to treat the imputed values as if they had been observed, and compute survey estimates and assess their varibility using standard formulas designed for the case of no nonresponse. This, however, could lead to some problems and biases in statistical analysis. For example, the use of standard formulas to assess varibility in analysis may seriously underestimate the true varibility, because standard formulas do not account for the changes in varibility due to nonresponse and/or imputation. This research involves development of correct and simple to implement statistical procedures to analyze survey data with nonrespondents and imputation; and will solve some real statistical problems in survey agencies such as the Census Bureau, the Bureau of Labor Statistics, and Westat.
9803112邵军这项研究涉及非受访者调查数据的补偿技术和方差估计方法的发展。研究人员专注于(1)验证和比较(理论和经验)现有的估算技术,并在必要时开发更好的程序;(2)为给定的估算方法开发正确的方差估计器,以产生正确的调查估计。将特别注意使用模型的随机热甲板估计、最近邻估计、冷甲板估计、多变量估计、纵向估计、分位数估计和不可忽略响应的估计。将研究多种方差估计技术(如线性化/泰勒展开、折刀、平衡半样本或平衡重复复制、随机分组和自举)。在方差估计中将解决的特殊问题包括不可忽略的抽样分数、应用复制方法时的近似性(例如分组和折叠)、复杂和复合的补偿方法(即使用许多不同的补偿方法和/或使用估算数据来对其他变量的非受访者进行估算)、最近邻的估算的方差估计、样本分位数的方差估计以及无法从数据集中识别的估计值的问题。当一些抽样单位在调查中配合调查,但未能回答某些问题时,就会出现项目无反应。通常用于处理项目无应答的补偿程序是为无应答插入值的补偿技术。通常的做法是,将估算的值视为已观察到的值,并使用为无反应的情况设计的标准公式来计算调查估计值并评估它们的可变性。然而,这可能会导致统计分析中的一些问题和偏差。例如,在分析中使用标准公式来评估变异性可能会严重低估真实的变异性,因为标准公式没有考虑由于无响应和/或归因引起的变异性的变化。这项研究涉及开发正确且易于实施的统计程序,以分析非受访者和归责的调查数据;并将解决人口普查局、劳工统计局和Westat等调查机构的一些实际统计问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Shao其他文献

Tuning the polarization of transmitted light through a double-layered gold film of U-shaped apertures by changing the chiral configuration
通过改变手性构型来调节通过 U 形孔径双层金膜的透射光的偏振
  • DOI:
    10.1063/1.4905058
  • 发表时间:
    2014-12
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Yongjun Bao;Dongjie Hou;Xinyu Tang;Bin Zhao;Ruwen Peng;Xiang Lu;Jun Shao;Tian Cui;Mu Wang
  • 通讯作者:
    Mu Wang
Low-power programmable linear-phase filter designed for fully balanced bio-signal recording application
低功耗可编程线性相位滤波器,专为全平衡生物信号记录应用而设计
  • DOI:
    10.1587/elex.9.1402
  • 发表时间:
    2012-09
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Guohe Zhang;Huibin Tao;Jun Shao;Shaochong Lei;Feng Liang
  • 通讯作者:
    Feng Liang
Achieving Efficient and Privacy-Preserving Dynamic Skyline Query in Online Medical Diagnosis
在线医疗诊断中实现高效且保护隐私的动态Skyline查询
  • DOI:
    10.1109/jiot.2021.3117933
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Songnian Zhang;S. Ray;Rongxing Lu;Yandong Zheng;Yunguo Guan;Jun Shao
  • 通讯作者:
    Jun Shao
The Potential Harm of Email Delivery: Investigating the HTTPS Configurations of Webmail Services
电子邮件传送的潜在危害:调查 Webmail 服务的 HTTPS 配置
Learning Dynamic Bayesian Network Structure from Non-Time Symmetric Data
从非时间对称数据学习动态贝叶斯网络结构

Jun Shao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jun Shao', 18)}}的其他基金

Variable Selection, Instrument Search and Estimation in Problems with Nonignorable Missing Data
不可忽略的缺失数据问题中的变量选择、仪器搜索和估计
  • 批准号:
    1914411
  • 财政年份:
    2019
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Standard Grant
Semiparametric Estimation and Variable Selection in the Presence of Nonignorable Nonresponse
存在不可忽略的无反应时的半参数估计和变量选择
  • 批准号:
    1612873
  • 财政年份:
    2016
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Standard Grant
Analysis of Longitudinal or Multivariate Data with Nonignorable Missing Values
具有不可忽略缺失值的纵向或多变量数据分析
  • 批准号:
    1305474
  • 财政年份:
    2013
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Standard Grant
Inference with Survey Data Having Nonignorable Nonresponse
利用具有不可忽略的无响应的调查数据进行推断
  • 批准号:
    1007454
  • 财政年份:
    2010
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Standard Grant
Analysis of Survey Data Using Imputation for Nonrespondents
使用非受访者插补分析调查数据
  • 批准号:
    0705033
  • 财政年份:
    2007
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Standard Grant
Imputation for Survey Data with Ignorable or Nonignorable Nonresponse
对具有可忽略或不可忽略的无答复的调查数据进行插补
  • 批准号:
    0404535
  • 财政年份:
    2004
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Standard Grant
Imputation Methodology for Complex Survey Problems
复杂调查问题的插补方法
  • 批准号:
    0102223
  • 财政年份:
    2001
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Resampling Methods in Model Selection and Sample Surveys
数学科学:模型选择和抽样调查中的重抽样方法
  • 批准号:
    9504425
  • 财政年份:
    1995
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Standard Grant

相似海外基金

A shape-constrained approach for non-parametric variance estimation for Markov Chains
马尔可夫链非参数方差估计的形状约束方法
  • 批准号:
    2311141
  • 财政年份:
    2023
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Continuing Grant
Variance estimation under multiple imputation for missing survey data
缺失调查数据多重插补下的方差估计
  • 批准号:
    574963-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 5.97万
  • 项目类别:
    University Undergraduate Student Research Awards
Incorporating Social Networking Side Information into Variance Estimation and Cluster Assignment in Relational Data Models
将社交网络辅助信息纳入关系数据模型中的方差估计和聚类分配
  • 批准号:
    425952-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Incorporating Social Networking Side Information into Variance Estimation and Cluster Assignment in Relational Data Models
将社交网络辅助信息纳入关系数据模型中的方差估计和聚类分配
  • 批准号:
    425952-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Estimation of non-additive genetic variance for complex traits using genome-wide single nucleotide polymorphyisms and sequence data
使用全基因组单核苷酸多态性和序列数据估计复杂性状的非加性遗传方差
  • 批准号:
    DP130102666
  • 财政年份:
    2013
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Projects
Incorporating Social Networking Side Information into Variance Estimation and Cluster Assignment in Relational Data Models
将社交网络辅助信息纳入关系数据模型中的方差估计和聚类分配
  • 批准号:
    425952-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Estimation simplifiée de la variance dans le cas de l'échantillonnage à deux phases
两阶段方差估计简化
  • 批准号:
    394125-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Mean and variance function estimation and related problems
均值和方差函数估计及相关问题
  • 批准号:
    98719-2003
  • 财政年份:
    2007
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
Mean and variance function estimation and related problems
均值和方差函数估计及相关问题
  • 批准号:
    98719-2003
  • 财政年份:
    2005
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
Mean and variance function estimation and related problems
均值和方差函数估计及相关问题
  • 批准号:
    98719-2003
  • 财政年份:
    2004
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了