Imputation for Survey Data with Ignorable or Nonignorable Nonresponse
对具有可忽略或不可忽略的无答复的调查数据进行插补
基本信息
- 批准号:0404535
- 负责人:
- 金额:$ 11.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-15 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research focuses on imputation and varianceestimation after imputation for survey data with nonresponse.The investigator will study different models that relate auxiliary variables and the variable to be imputed (e.g., parametric, non-parametric, and semi-parametric models); different response mechanisms(ignorable or non-ignorable); various imputation techniques (e.g., regression,nearest neighbor, and random imputation);different types of estimators (e.g., sample mean andsample quantiles); and different types of data(e.g., cross-sectional, clustered, or longitudinal data).The investigator will also study a pseudo empirical likelihoodimputation method that provides more efficient survey estimatorsthan other imputation methods.For each imputation method, variance estimation that takes nonresponse and imputation into account will be studied, using a direct derivation approach or a replication method (such as the jackknife, the balanced half samples, and the bootstrap)that contains a re-imputation component to assess the variabilitycaused by imputation. Many statistics and government agencies collect data through surveys. Most surveys have nonresponse. Item nonresponse occurs when some sampled units cooperate in the survey but fail to provide answers to some questions. Imputation techniques, which insert values for nonrespondents, are commonly used compensation procedures for item nonresponse. In some cases, when auxiliary information is properly used, imputation increases statistical accuracy. An essential requirement for an imputation method is that one can obtain unbiased (or approximately unbiased) survey estimators and their variability estimators by treating the imputed values as observed data and using the standard estimation formulas designed for the case of no nonresponse. This requires developmentson imputation methodology and statistical analysis proceduresto take nonresponse and imputation into account. Since most of the proposed research topics are motivated by problems in survey agencies such as the Census Bureau, the Bureau of Labor Statistics, Westat, and Statistics Canada, results obtained from the proposed research will have significant impacts on the imputation and variance estimation methodology for these survey agencies.
拟议的研究重点是无应答调查数据的插补和插补后的方差估计。研究者将研究将辅助变量与待插补变量(例如,参数、非参数和半参数模型);不同的响应机制(可验证的或不可验证的);各种估算技术(例如,回归、最近邻和随机插补);不同类型的估计量(例如,样本平均值和样本分位数);以及不同类型的数据(例如,研究者还将研究一种伪经验似然插补方法,该方法提供了比其他插补方法更有效的调查估计值。对于每种插补方法,将使用直接推导方法或重复方法研究考虑无应答和插补的方差估计(如刀切法、平衡半样本法和自助法),其中包含重新插补成分,以评估插补引起的变异性。许多统计机构和政府机构通过调查收集数据。大多数调查没有回答。项目无应答是指某些抽样单位在调查中合作,但未能提供某些问题的答案。插补技术,插入值的nonresponses,是常用的补偿程序项目无应答。在某些情况下,如果适当使用辅助信息,插补可提高统计准确性。插补方法的一个基本要求是,通过将插补值视为观察数据并使用为无无响应情况设计的标准估计公式,可以获得无偏(或近似无偏)调查估计量及其变异性估计量。这需要发展插补方法和统计分析程序,以考虑无应答和插补。由于大多数拟议的研究课题的动机调查机构,如人口普查局,劳工统计局,Westat和加拿大统计局的问题,从拟议的研究所获得的结果将有显着影响这些调查机构的插补和方差估计方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Shao其他文献
Tuning the polarization of transmitted light through a double-layered gold film of U-shaped apertures by changing the chiral configuration
通过改变手性构型来调节通过 U 形孔径双层金膜的透射光的偏振
- DOI:
10.1063/1.4905058 - 发表时间:
2014-12 - 期刊:
- 影响因子:4
- 作者:
Yongjun Bao;Dongjie Hou;Xinyu Tang;Bin Zhao;Ruwen Peng;Xiang Lu;Jun Shao;Tian Cui;Mu Wang - 通讯作者:
Mu Wang
Low-power programmable linear-phase filter designed for fully balanced bio-signal recording application
低功耗可编程线性相位滤波器,专为全平衡生物信号记录应用而设计
- DOI:
10.1587/elex.9.1402 - 发表时间:
2012-09 - 期刊:
- 影响因子:0.8
- 作者:
Guohe Zhang;Huibin Tao;Jun Shao;Shaochong Lei;Feng Liang - 通讯作者:
Feng Liang
Achieving Efficient and Privacy-Preserving Dynamic Skyline Query in Online Medical Diagnosis
在线医疗诊断中实现高效且保护隐私的动态Skyline查询
- DOI:
10.1109/jiot.2021.3117933 - 发表时间:
2022 - 期刊:
- 影响因子:10.6
- 作者:
Songnian Zhang;S. Ray;Rongxing Lu;Yandong Zheng;Yunguo Guan;Jun Shao - 通讯作者:
Jun Shao
The Potential Harm of Email Delivery: Investigating the HTTPS Configurations of Webmail Services
电子邮件传送的潜在危害:调查 Webmail 服务的 HTTPS 配置
- DOI:
10.1109/tdsc.2023.3246600 - 发表时间:
2024 - 期刊:
- 影响因子:7.3
- 作者:
Ruixuan Li;Zhenyong Zhang;Jun Shao;Rongxing Lu;Xiaoqi Jia;Guiyi Wei - 通讯作者:
Guiyi Wei
Learning Dynamic Bayesian Network Structure from Non-Time Symmetric Data
从非时间对称数据学习动态贝叶斯网络结构
- DOI:
10.1109/ccpr.2009.5344156 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Shuangcheng Wang;Jun Shao;Xindang Cheng - 通讯作者:
Xindang Cheng
Jun Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Shao', 18)}}的其他基金
Variable Selection, Instrument Search and Estimation in Problems with Nonignorable Missing Data
不可忽略的缺失数据问题中的变量选择、仪器搜索和估计
- 批准号:
1914411 - 财政年份:2019
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Semiparametric Estimation and Variable Selection in the Presence of Nonignorable Nonresponse
存在不可忽略的无反应时的半参数估计和变量选择
- 批准号:
1612873 - 财政年份:2016
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Analysis of Longitudinal or Multivariate Data with Nonignorable Missing Values
具有不可忽略缺失值的纵向或多变量数据分析
- 批准号:
1305474 - 财政年份:2013
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Inference with Survey Data Having Nonignorable Nonresponse
利用具有不可忽略的无响应的调查数据进行推断
- 批准号:
1007454 - 财政年份:2010
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Analysis of Survey Data Using Imputation for Nonrespondents
使用非受访者插补分析调查数据
- 批准号:
0705033 - 财政年份:2007
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Imputation Methodology for Complex Survey Problems
复杂调查问题的插补方法
- 批准号:
0102223 - 财政年份:2001
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Imputation and Variance Estimation for Survey Data
调查数据的插补和方差估计
- 批准号:
9803112 - 财政年份:1998
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Resampling Methods in Model Selection and Sample Surveys
数学科学:模型选择和抽样调查中的重抽样方法
- 批准号:
9504425 - 财政年份:1995
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
相似海外基金
Variance estimation under multiple imputation for missing survey data
缺失调查数据多重插补下的方差估计
- 批准号:
574963-2022 - 财政年份:2022
- 资助金额:
$ 11.1万 - 项目类别:
University Undergraduate Student Research Awards
Multiply robust random hot-deck imputation procedures for missing survey data
针对缺失的调查数据乘以稳健的随机热甲板插补程序
- 批准号:
564107-2021 - 财政年份:2021
- 资助金额:
$ 11.1万 - 项目类别:
University Undergraduate Student Research Awards
Efficient imputation and resampling methods for analyzing complex survey data
用于分析复杂调查数据的高效插补和重采样方法
- 批准号:
227179-2010 - 财政年份:2014
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual
Efficient imputation and resampling methods for analyzing complex survey data
用于分析复杂调查数据的高效插补和重采样方法
- 批准号:
227179-2010 - 财政年份:2013
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual
Efficient imputation and resampling methods for analyzing complex survey data
用于分析复杂调查数据的高效插补和重采样方法
- 批准号:
227179-2010 - 财政年份:2012
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual
Efficient imputation and resampling methods for analyzing complex survey data
用于分析复杂调查数据的高效插补和重采样方法
- 批准号:
227179-2010 - 财政年份:2011
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual
Efficient imputation and resampling methods for analyzing complex survey data
用于分析复杂调查数据的高效插补和重采样方法
- 批准号:
227179-2010 - 财政年份:2010
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual
Inference under imputation for missing survey data
缺失调查数据的推论
- 批准号:
327048-2006 - 财政年份:2008
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual
Analysis of Survey Data Using Imputation for Nonrespondents
使用非受访者插补分析调查数据
- 批准号:
0705033 - 财政年份:2007
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Inference under imputation for missing survey data
缺失调查数据的推论
- 批准号:
327048-2006 - 财政年份:2007
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual