Variable Selection, Instrument Search and Estimation in Problems with Nonignorable Missing Data
不可忽略的缺失数据问题中的变量选择、仪器搜索和估计
基本信息
- 批准号:1914411
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Missing data are ubiquitous in many applications including sample surveys, clinical trials and medical/health studies. Handling incomplete data is particularly challenging when the missingness is related to the unobserved data. This project seeks to develop statistical models and methods for analyzing datasets with nonignorable missing values. The research topics are motivated by problems encountered by survey agencies as well as in data sets from biomedical/health studies. The results will have significant impact both in terms of new methodological development for handling incomplete data as well as in applications to real datasets from a number of scientific fields. When the missing data mechanism depends on unobserved data, the missing data are referred to as nonignorable. Handling nonignorable missing data is a challenging problem as the unobserved values follow a distribution different from that of the observed data leading to issues of identifiability and estimability of the underlying unknown parameters. The proposed research focuses on the following three areas: (1) Instrument search and model selection. A recent method for handling nonignorable missing data is built on the use of a covariate (called an instrument) that enables researchers to identify and estimate population parameters. In applications, however, such an instrument must be constructed from a given set of observed covariates. The proposed research will develop methods for finding instruments in different situations, including semiparametric propensity models, pseudo likelihood methods, and problems with both missing responses and covariate values. Together with instrument search, model selection regarding the parametric component will be also investigated. (2) High dimension reduction and variable selection. In many big data applications, the dimension of the covariate vector is often very large, however, only a few covariates are useful. While there is extensive research related to dimension reduction and variable selection over the past two decades, there are no results available in the presence of nonignorable missing responses. The proposed research focuses on covariate selection or dimension reduction under two semiparametric frameworks. (3) Multivariate data with nonignorable missing values. The proposed research will develop methods for problems with both missing responses and covariates, survival analysis with survival-dependent missing covariates, and personalized medicine with longitudinal data having dropouts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
缺失数据在许多应用中普遍存在,包括抽样调查、临床试验和医学/健康研究。 当缺失与未观察到的数据有关时,处理不完整的数据特别具有挑战性。 该项目旨在开发用于分析具有不可重复缺失值的数据集的统计模型和方法。 研究主题的动机是调查机构遇到的问题,以及从生物医学/健康研究的数据集。 结果将有显着的影响,无论是在处理不完整的数据,以及在应用程序的真实的数据集从一些科学领域的新方法的发展。当缺失数据机制依赖于未观测数据时,缺失数据被称为不可观测数据。 处理不可观测的缺失数据是一个具有挑战性的问题,因为未观测值遵循与观测数据不同的分布,导致潜在未知参数的可识别性和可估计性问题。 本文的研究主要集中在以下三个方面:(1)工具搜索和模型选择。最近的一种处理不可重复缺失数据的方法是建立在协变量(称为工具)的基础上的,它使研究人员能够识别和估计总体参数。 然而,在应用中,这样的工具必须从一组给定的观测协变量构造。 拟议的研究将开发在不同情况下寻找工具的方法,包括半参数倾向模型,伪似然方法,以及缺失响应和协变量值的问题。 与仪器搜索一起,还将研究关于参数分量的模型选择。 (2)高度降维和变量选择。在许多大数据应用中,协变量向量的维度通常非常大,但只有少数协变量有用。 虽然在过去的二十年里有大量的研究与降维和变量选择有关,但在存在不可解释的缺失响应的情况下没有结果。 建议的研究重点是协变量的选择或降维两个半参数框架下。 (3)具有不可重复缺失值的多变量数据。该研究计划将开发针对缺失响应和协变量问题的方法、针对生存依赖缺失协变量的生存分析方法、针对有脱落的纵向数据的个性化医疗方法。该奖项反映了NSF的法定使命,通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A GMM Approach in Coupling Internal Data and External Summary Information with Heterogeneous Data Populations
一种将内部数据和外部摘要信息与异构数据群耦合的 GMM 方法
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Shao, Jun;Wang, Jinyi;Wang, Lei
- 通讯作者:Wang, Lei
Empirical Likelihood Using External Summary Information
- DOI:10.5705/ss.202023.0056
- 发表时间:2023
- 期刊:
- 影响因子:1.4
- 作者:Lyu Ni;Junchao Shao;Jinyi Wang;Lei Wang
- 通讯作者:Lyu Ni;Junchao Shao;Jinyi Wang;Lei Wang
Covariate-adjusted log-rank test: guaranteed efficiency gain and universal applicability
- DOI:10.1093/biomet/asad045
- 发表时间:2023-09-10
- 期刊:
- 影响因子:2.7
- 作者:Ye,Ting;Shao,Jun;Yi,Yanyao
- 通讯作者:Yi,Yanyao
OnlyToward Better Practice of Covariate Adjustment in Analyzing Randomized Clinical Trials
OnlyTowards Covariate调整在分析随机临床试验中的更好实践
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Ye, Ting;Shao, Jun;Yi, Yanyao;Zhao, Qingyuan
- 通讯作者:Zhao, Qingyuan
Inference on the average treatment effect under minimization and other covariate-adaptive randomization methods
最小化和其他协变量自适应随机化方法下平均治疗效果的推断
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:2.7
- 作者:Ting Ye Yanyao Yi Jun Shao
- 通讯作者:Ting Ye Yanyao Yi Jun Shao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Shao其他文献
Achieving Efficient and Privacy-Preserving Dynamic Skyline Query in Online Medical Diagnosis
在线医疗诊断中实现高效且保护隐私的动态Skyline查询
- DOI:
10.1109/jiot.2021.3117933 - 发表时间:
2022 - 期刊:
- 影响因子:10.6
- 作者:
Songnian Zhang;S. Ray;Rongxing Lu;Yandong Zheng;Yunguo Guan;Jun Shao - 通讯作者:
Jun Shao
Low-power programmable linear-phase filter designed for fully balanced bio-signal recording application
低功耗可编程线性相位滤波器,专为全平衡生物信号记录应用而设计
- DOI:
10.1587/elex.9.1402 - 发表时间:
2012-09 - 期刊:
- 影响因子:0.8
- 作者:
Guohe Zhang;Huibin Tao;Jun Shao;Shaochong Lei;Feng Liang - 通讯作者:
Feng Liang
Learning Dynamic Bayesian Network Structure from Non-Time Symmetric Data
从非时间对称数据学习动态贝叶斯网络结构
- DOI:
10.1109/ccpr.2009.5344156 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Shuangcheng Wang;Jun Shao;Xindang Cheng - 通讯作者:
Xindang Cheng
Tuning the polarization of transmitted light through a double-layered gold film of U-shaped apertures by changing the chiral configuration
通过改变手性构型来调节通过 U 形孔径双层金膜的透射光的偏振
- DOI:
10.1063/1.4905058 - 发表时间:
2014-12 - 期刊:
- 影响因子:4
- 作者:
Yongjun Bao;Dongjie Hou;Xinyu Tang;Bin Zhao;Ruwen Peng;Xiang Lu;Jun Shao;Tian Cui;Mu Wang - 通讯作者:
Mu Wang
The Potential Harm of Email Delivery: Investigating the HTTPS Configurations of Webmail Services
电子邮件传送的潜在危害:调查 Webmail 服务的 HTTPS 配置
- DOI:
10.1109/tdsc.2023.3246600 - 发表时间:
2024 - 期刊:
- 影响因子:7.3
- 作者:
Ruixuan Li;Zhenyong Zhang;Jun Shao;Rongxing Lu;Xiaoqi Jia;Guiyi Wei - 通讯作者:
Guiyi Wei
Jun Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Shao', 18)}}的其他基金
Semiparametric Estimation and Variable Selection in the Presence of Nonignorable Nonresponse
存在不可忽略的无反应时的半参数估计和变量选择
- 批准号:
1612873 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Analysis of Longitudinal or Multivariate Data with Nonignorable Missing Values
具有不可忽略缺失值的纵向或多变量数据分析
- 批准号:
1305474 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Inference with Survey Data Having Nonignorable Nonresponse
利用具有不可忽略的无响应的调查数据进行推断
- 批准号:
1007454 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Analysis of Survey Data Using Imputation for Nonrespondents
使用非受访者插补分析调查数据
- 批准号:
0705033 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Imputation for Survey Data with Ignorable or Nonignorable Nonresponse
对具有可忽略或不可忽略的无答复的调查数据进行插补
- 批准号:
0404535 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Imputation Methodology for Complex Survey Problems
复杂调查问题的插补方法
- 批准号:
0102223 - 财政年份:2001
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Imputation and Variance Estimation for Survey Data
调查数据的插补和方差估计
- 批准号:
9803112 - 财政年份:1998
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mathematical Sciences: Resampling Methods in Model Selection and Sample Surveys
数学科学:模型选择和抽样调查中的重抽样方法
- 批准号:
9504425 - 财政年份:1995
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
连锁群选育法(Linkage Group Selection)在柔嫩艾美耳球虫表型相关基因研究中应用
- 批准号:30700601
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Evolutionarily smart vaccine strain selection for proactive vaccinology
用于主动疫苗学的进化智能疫苗株选择
- 批准号:
MR/Y004337/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
mRNA selection for translation: beyond the canonical view
用于翻译的 mRNA 选择:超越规范观点
- 批准号:
BB/Y005783/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
- 批准号:
24K15089 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ERI: Intelligent Modeling and Parameter Selection in Distributed Optimization for Power Networks
ERI:电力网络分布式优化中的智能建模和参数选择
- 批准号:
2347120 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Leveraging Machine Learning to Examine Engineering Students Self-selection in Entrepreneurship Education Programs
利用机器学习检查工科学生在创业教育项目中的自我选择
- 批准号:
2321175 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Indication selection, patient stratification, and IND preparation for STX-002: the first-in-class LRG1 inhibitor for treatment of chronic kidney disease and immunotherapy-resistant tumours.
STX-002的适应症选择、患者分层和IND准备:用于治疗慢性肾病和免疫治疗耐药肿瘤的一流LRG1抑制剂。
- 批准号:
10092585 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Collaborative R&D
Universal Model Selection Criteria for Scientific Machine Learning
科学机器学习的通用模型选择标准
- 批准号:
DE240100144 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Discovery Early Career Researcher Award
AI tools for biocatalyst route selection
用于生物催化剂路线选择的人工智能工具
- 批准号:
10076156 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant for R&D
Development of a food bolus formation ability evaluation system to support the selection of appropriate food forms.
开发食物团形成能力评估系统以支持选择合适的食物形式。
- 批准号:
23K09279 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A novel neural pathway of preferential food selection for high carbohydrate and fat diets.
高碳水化合物和脂肪饮食的优先食物选择的新神经通路。
- 批准号:
23H02965 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)