Analysis of Survey Data Using Imputation for Nonrespondents
使用非受访者插补分析调查数据
基本信息
- 批准号:0705033
- 负责人:
- 金额:$ 21.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-10-01 至 2011-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Imputation is a popular technique in handling nonresponse in surveys. This project focuses on the development of imputation methods that produce approximately unbiased and efficient survey estimators when imputed values are treated as observed data and standard methods are applied to compute the survey estimators. Various imputation methods will be studied, such as the nearest neighbor imputation, kernel nonparametric regression imputation, empirical likelihood, and techniques of handling measurement error. Emphasis will be placed on the study of multivariate survey variables and/or multivariate covariates, and problems with nonresponse in not only the main survey variables but also the covariates. For each imputation method, variance estimation that takes nonresponse and imputation into account will be studied, using a direct derivation approach or a replication method (such as the jackknife, the balanced half samples, the random groups, and the bootstrap) that contains a re-imputation component to assess the variability caused by imputation. In particular, some shortcut replication methods that reduce the amount of computation will be investigated.Many statistics and government agencies collect data through surveys. Most surveys have nonresponse. Item nonresponse occurs when some sampled units cooperate in the survey but fail to provide answers to some questions. Imputation techniques, which insert values for nonrespondents, are commonly used compensation procedures for item nonresponse. In some cases, when auxiliary information is properly used, imputation increases statistical accuracy. An essential requirement for an imputation method is that one can obtain unbiased (or approximately unbiased) survey estimators and their variability estimators by treating the imputed values as observed data and using the standard estimation formulas designed for the case of no nonresponse. This requires developments on imputation methodology and statistical analysis procedures to take nonresponse and imputation into account. Since most of the proposed research topics are motivated by problems in survey agencies such as the Census Bureau, the Bureau of Labor Statistics, Westat, and Statistics Canada, results obtained from the proposed research will have significant impacts on the imputation and variance estimation methodology for these survey agencies. The research is supported by the Methodology, Measurement, and Statistics Program, the Statistics and Probability Program, and a consortium of federal statistical agencies as part of a joint activity to support research on survey and statistical methodology.
插补是处理调查中无回答问题的一种常用技术。 该项目的重点是插补方法的发展,产生近似无偏和有效的调查估计值时,插补值被视为观察数据和标准方法应用于计算调查估计。 各种填补方法将被研究,如最近邻填补,核非参数回归填补,经验似然,和处理测量误差的技术。 重点将放在多变量调查变量和/或多变量协变量的研究,以及不仅在主要调查变量,而且在协变量无响应的问题。 对于每种插补方法,将使用直接推导方法或重复方法(如刀切法、平衡半样本、随机组和自助法)研究考虑无应答和插补的方差估计,其中包含重新插补组件,以评估插补引起的变异性。 特别是一些减少计算量的快捷复制方法将被调查。许多统计和政府机构通过调查收集数据。 大多数调查没有回答。 项目无应答是指某些抽样单位在调查中合作,但未能提供某些问题的答案。 插补技术,插入值的nonresponses,是常用的补偿程序项目无应答。 在某些情况下,如果适当使用辅助信息,插补可提高统计准确性。 插补方法的一个基本要求是,通过将插补值视为观察数据并使用为无无响应情况设计的标准估计公式,可以获得无偏(或近似无偏)调查估计量及其变异性估计量。 这就需要发展估算方法和统计分析程序,以考虑到无答复和估算。 由于大多数拟议的研究课题的动机调查机构,如人口普查局,劳工统计局,Westat和加拿大统计局的问题,从拟议的研究所获得的结果将有显着影响这些调查机构的插补和方差估计方法。 这项研究得到了方法、测量和统计方案、统计和概率方案以及联邦统计机构联盟的支持,作为支持调查和统计方法研究的联合活动的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Shao其他文献
Achieving Efficient and Privacy-Preserving Dynamic Skyline Query in Online Medical Diagnosis
在线医疗诊断中实现高效且保护隐私的动态Skyline查询
- DOI:
10.1109/jiot.2021.3117933 - 发表时间:
2022 - 期刊:
- 影响因子:10.6
- 作者:
Songnian Zhang;S. Ray;Rongxing Lu;Yandong Zheng;Yunguo Guan;Jun Shao - 通讯作者:
Jun Shao
Low-power programmable linear-phase filter designed for fully balanced bio-signal recording application
低功耗可编程线性相位滤波器,专为全平衡生物信号记录应用而设计
- DOI:
10.1587/elex.9.1402 - 发表时间:
2012-09 - 期刊:
- 影响因子:0.8
- 作者:
Guohe Zhang;Huibin Tao;Jun Shao;Shaochong Lei;Feng Liang - 通讯作者:
Feng Liang
Learning Dynamic Bayesian Network Structure from Non-Time Symmetric Data
从非时间对称数据学习动态贝叶斯网络结构
- DOI:
10.1109/ccpr.2009.5344156 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Shuangcheng Wang;Jun Shao;Xindang Cheng - 通讯作者:
Xindang Cheng
Tuning the polarization of transmitted light through a double-layered gold film of U-shaped apertures by changing the chiral configuration
通过改变手性构型来调节通过 U 形孔径双层金膜的透射光的偏振
- DOI:
10.1063/1.4905058 - 发表时间:
2014-12 - 期刊:
- 影响因子:4
- 作者:
Yongjun Bao;Dongjie Hou;Xinyu Tang;Bin Zhao;Ruwen Peng;Xiang Lu;Jun Shao;Tian Cui;Mu Wang - 通讯作者:
Mu Wang
The Potential Harm of Email Delivery: Investigating the HTTPS Configurations of Webmail Services
电子邮件传送的潜在危害:调查 Webmail 服务的 HTTPS 配置
- DOI:
10.1109/tdsc.2023.3246600 - 发表时间:
2024 - 期刊:
- 影响因子:7.3
- 作者:
Ruixuan Li;Zhenyong Zhang;Jun Shao;Rongxing Lu;Xiaoqi Jia;Guiyi Wei - 通讯作者:
Guiyi Wei
Jun Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Shao', 18)}}的其他基金
Variable Selection, Instrument Search and Estimation in Problems with Nonignorable Missing Data
不可忽略的缺失数据问题中的变量选择、仪器搜索和估计
- 批准号:
1914411 - 财政年份:2019
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
Semiparametric Estimation and Variable Selection in the Presence of Nonignorable Nonresponse
存在不可忽略的无反应时的半参数估计和变量选择
- 批准号:
1612873 - 财政年份:2016
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
Analysis of Longitudinal or Multivariate Data with Nonignorable Missing Values
具有不可忽略缺失值的纵向或多变量数据分析
- 批准号:
1305474 - 财政年份:2013
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
Inference with Survey Data Having Nonignorable Nonresponse
利用具有不可忽略的无响应的调查数据进行推断
- 批准号:
1007454 - 财政年份:2010
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
Imputation for Survey Data with Ignorable or Nonignorable Nonresponse
对具有可忽略或不可忽略的无答复的调查数据进行插补
- 批准号:
0404535 - 财政年份:2004
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
Imputation Methodology for Complex Survey Problems
复杂调查问题的插补方法
- 批准号:
0102223 - 财政年份:2001
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
Imputation and Variance Estimation for Survey Data
调查数据的插补和方差估计
- 批准号:
9803112 - 财政年份:1998
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
Mathematical Sciences: Resampling Methods in Model Selection and Sample Surveys
数学科学:模型选择和抽样调查中的重抽样方法
- 批准号:
9504425 - 财政年份:1995
- 资助金额:
$ 21.64万 - 项目类别:
Standard Grant
相似海外基金
Urbanization, educational expansion and income inequality in Asian developing countries: An analysis based on household survey data
亚洲发展中国家的城市化、教育扩张与收入不平等:基于家庭调查数据的分析
- 批准号:
23K01409 - 财政年份:2023
- 资助金额:
$ 21.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling and Forecasting Multivariate and Nonlinear Time Series, and Analysis of Complex Survey Data
多元和非线性时间序列的建模和预测以及复杂调查数据的分析
- 批准号:
RGPIN-2020-05016 - 财政年份:2022
- 资助金额:
$ 21.64万 - 项目类别:
Discovery Grants Program - Individual
FreeTxt: supporting bilingual free-text survey and questionnaire data analysis
FreeTxt:支持双语自由文本调查和问卷数据分析
- 批准号:
AH/W004844/1 - 财政年份:2022
- 资助金额:
$ 21.64万 - 项目类别:
Research Grant
Modeling and Forecasting Multivariate and Nonlinear Time Series, and Analysis of Complex Survey Data
多元和非线性时间序列的建模和预测以及复杂调查数据的分析
- 批准号:
RGPIN-2020-05016 - 财政年份:2021
- 资助金额:
$ 21.64万 - 项目类别:
Discovery Grants Program - Individual
Evidence for innovations that improve equity in access to primary care: Cross-jurisdictional comparative analysis of longitudinal national survey data, policy review and synthesis
改善初级保健公平性的创新证据:纵向全国调查数据、政策审查和综合的跨司法管辖区比较分析
- 批准号:
457400 - 财政年份:2021
- 资助金额:
$ 21.64万 - 项目类别:
Operating Grants
Modeling and Forecasting Multivariate and Nonlinear Time Series, and Analysis of Complex Survey Data
多元和非线性时间序列的建模和预测以及复杂调查数据的分析
- 批准号:
RGPIN-2020-05016 - 财政年份:2020
- 资助金额:
$ 21.64万 - 项目类别:
Discovery Grants Program - Individual
Statistical Modeling and Analysis for Multivariate and Nonlinear Time Series and for Complex Survey Data
多元和非线性时间序列以及复杂调查数据的统计建模和分析
- 批准号:
RGPIN-2015-04704 - 财政年份:2019
- 资助金额:
$ 21.64万 - 项目类别:
Discovery Grants Program - Individual
Disaggregating Asian American and Pacific Islander Health Data: Multilevel Analysis of Neighborhood Context and Cardiovascular Health using the Medicare Health Outcomes Survey
分解亚裔美国人和太平洋岛民的健康数据:使用医疗保险健康结果调查对社区环境和心血管健康进行多层次分析
- 批准号:
9755319 - 财政年份:2018
- 资助金额:
$ 21.64万 - 项目类别:
Multilevel Relationship between Assurance and Trust: Analysis on Community Survey Data
保证与信任之间的多层次关系:社区调查数据分析
- 批准号:
18K13275 - 财政年份:2018
- 资助金额:
$ 21.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Statistical Modeling and Analysis for Multivariate and Nonlinear Time Series and for Complex Survey Data
多元和非线性时间序列以及复杂调查数据的统计建模和分析
- 批准号:
RGPIN-2015-04704 - 财政年份:2018
- 资助金额:
$ 21.64万 - 项目类别:
Discovery Grants Program - Individual