Imputation Methodology for Complex Survey Problems
复杂调查问题的插补方法
基本信息
- 批准号:0102223
- 负责人:
- 金额:$ 9.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research focuses on imputation and variance estimation after imputation for survey data with nonresponse. Marginal imputation (such as random hot deck imputation, nearest neighbor imputation, and random regression imputation) will be studied for the purpose of estimating population totals and quantiles. The investigator will also study joint imputation (for estimating parameters such as the coefficients of correlation or the cell probabilities in a contingency table) and imputation under nonignorable response. For each imputation method, variance estimation that takes nonresponse and imputation into account will be studied, using a direct derivation approach or a replication method such as the jackknife, the balanced half samples, and the bootstrap.Many statistics and government agencies collect data through surveys. Most surveys have nonresponse. Item nonresponse occurs when some sampled units cooperate in the survey but fail to provide answers to some questions. Imputation techniques, which insert values for nonrespondents, are commonly used compensation procedures for item nonresponse. In some cases, when auxiliary information is properly used, imputation increases statistical accuracy. An essential requirement for an imputation method is that one can obtain unbiased (or approximately unbiased) survey estimators by treating the imputed values as observed data and using the standard estimation formulas designed for the case of no nonresponse. This requires developments on imputation methodology and statistical analysis procedures to take nonresponse and imputation into account. Since most of the proposed research topics are motivated by problems in survey agencies such as the Census Bureau, the Bureau of Labor Statistics, Westat, and Statistics Canada, results obtained from the proposed research will have significant impacts on the imputation and variance estimation methodology for these survey agencies.
本文主要研究无回答调查数据的插补和插补后的方差估计问题。 为了估计总体和分位数,将研究边缘插补(如随机热甲板插补、最近邻插补和随机回归插补)。 研究者还将研究联合插补(用于估计相关系数或列联表中的单元格概率等参数)和不可解释应答下的插补。 对于每种插补方法,将使用直接推导方法或重复方法(如刀切法、平衡半样本法和自助法)研究考虑无应答和插补的方差估计。许多统计和政府机构通过调查收集数据。 大多数调查没有回答。项目无应答是指某些抽样单位在调查中合作,但未能提供某些问题的答案。插补技术,插入值的nonresponses,是常用的补偿程序项目无应答。 在某些情况下,如果适当使用辅助信息,插补可提高统计准确性。 插补方法的一个基本要求是,通过将插补值视为观察数据并使用为无无应答情况设计的标准估计公式,可以获得无偏(或近似无偏)的调查估计量。 这就需要发展估算方法和统计分析程序,以考虑到无答复和估算。 由于大多数拟议的研究课题的动机调查机构,如人口普查局,劳工统计局,Westat和加拿大统计局的问题,从拟议的研究所获得的结果将有显着影响这些调查机构的插补和方差估计方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Shao其他文献
Tuning the polarization of transmitted light through a double-layered gold film of U-shaped apertures by changing the chiral configuration
通过改变手性构型来调节通过 U 形孔径双层金膜的透射光的偏振
- DOI:
10.1063/1.4905058 - 发表时间:
2014-12 - 期刊:
- 影响因子:4
- 作者:
Yongjun Bao;Dongjie Hou;Xinyu Tang;Bin Zhao;Ruwen Peng;Xiang Lu;Jun Shao;Tian Cui;Mu Wang - 通讯作者:
Mu Wang
Low-power programmable linear-phase filter designed for fully balanced bio-signal recording application
低功耗可编程线性相位滤波器,专为全平衡生物信号记录应用而设计
- DOI:
10.1587/elex.9.1402 - 发表时间:
2012-09 - 期刊:
- 影响因子:0.8
- 作者:
Guohe Zhang;Huibin Tao;Jun Shao;Shaochong Lei;Feng Liang - 通讯作者:
Feng Liang
Achieving Efficient and Privacy-Preserving Dynamic Skyline Query in Online Medical Diagnosis
在线医疗诊断中实现高效且保护隐私的动态Skyline查询
- DOI:
10.1109/jiot.2021.3117933 - 发表时间:
2022 - 期刊:
- 影响因子:10.6
- 作者:
Songnian Zhang;S. Ray;Rongxing Lu;Yandong Zheng;Yunguo Guan;Jun Shao - 通讯作者:
Jun Shao
The Potential Harm of Email Delivery: Investigating the HTTPS Configurations of Webmail Services
电子邮件传送的潜在危害:调查 Webmail 服务的 HTTPS 配置
- DOI:
10.1109/tdsc.2023.3246600 - 发表时间:
2024 - 期刊:
- 影响因子:7.3
- 作者:
Ruixuan Li;Zhenyong Zhang;Jun Shao;Rongxing Lu;Xiaoqi Jia;Guiyi Wei - 通讯作者:
Guiyi Wei
Learning Dynamic Bayesian Network Structure from Non-Time Symmetric Data
从非时间对称数据学习动态贝叶斯网络结构
- DOI:
10.1109/ccpr.2009.5344156 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Shuangcheng Wang;Jun Shao;Xindang Cheng - 通讯作者:
Xindang Cheng
Jun Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Shao', 18)}}的其他基金
Variable Selection, Instrument Search and Estimation in Problems with Nonignorable Missing Data
不可忽略的缺失数据问题中的变量选择、仪器搜索和估计
- 批准号:
1914411 - 财政年份:2019
- 资助金额:
$ 9.79万 - 项目类别:
Standard Grant
Semiparametric Estimation and Variable Selection in the Presence of Nonignorable Nonresponse
存在不可忽略的无反应时的半参数估计和变量选择
- 批准号:
1612873 - 财政年份:2016
- 资助金额:
$ 9.79万 - 项目类别:
Standard Grant
Analysis of Longitudinal or Multivariate Data with Nonignorable Missing Values
具有不可忽略缺失值的纵向或多变量数据分析
- 批准号:
1305474 - 财政年份:2013
- 资助金额:
$ 9.79万 - 项目类别:
Standard Grant
Inference with Survey Data Having Nonignorable Nonresponse
利用具有不可忽略的无响应的调查数据进行推断
- 批准号:
1007454 - 财政年份:2010
- 资助金额:
$ 9.79万 - 项目类别:
Standard Grant
Analysis of Survey Data Using Imputation for Nonrespondents
使用非受访者插补分析调查数据
- 批准号:
0705033 - 财政年份:2007
- 资助金额:
$ 9.79万 - 项目类别:
Standard Grant
Imputation for Survey Data with Ignorable or Nonignorable Nonresponse
对具有可忽略或不可忽略的无答复的调查数据进行插补
- 批准号:
0404535 - 财政年份:2004
- 资助金额:
$ 9.79万 - 项目类别:
Standard Grant
Imputation and Variance Estimation for Survey Data
调查数据的插补和方差估计
- 批准号:
9803112 - 财政年份:1998
- 资助金额:
$ 9.79万 - 项目类别:
Standard Grant
Mathematical Sciences: Resampling Methods in Model Selection and Sample Surveys
数学科学:模型选择和抽样调查中的重抽样方法
- 批准号:
9504425 - 财政年份:1995
- 资助金额:
$ 9.79万 - 项目类别:
Standard Grant
相似海外基金
A complex and comprehensive micro-sociological study on the significance and practical methodology of employment support by DARC
关于DARC就业支持的意义和实践方法的复杂而全面的微观社会学研究
- 批准号:
23H00884 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Developing a Laplacian-spectrum-based methodology for detailed modelling of complex networks
开发基于拉普拉斯谱的复杂网络详细建模方法
- 批准号:
22K13960 - 财政年份:2022
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
High-resolution Nuclear Magnetic Resonance and Mass spectrometry methodology for the analysis of complex mixtures
用于分析复杂混合物的高分辨率核磁共振和质谱方法
- 批准号:
2424276 - 财政年份:2020
- 资助金额:
$ 9.79万 - 项目类别:
Studentship
HSM:Development of methodology and computationally efficient software for analysis of PGx exome sequencing studies of complex "time-to-event" outcomes
HSM:开发方法和计算高效的软件,用于分析复杂的“事件发生时间”结果的 PGx 外显子组测序研究
- 批准号:
MR/R013519/1 - 财政年份:2018
- 资助金额:
$ 9.79万 - 项目类别:
Research Grant
Statistical Modeling Methodology on Boolean Functions for Conquering Cancer Complex Ecosystem
征服癌症复杂生态系统的布尔函数统计建模方法
- 批准号:
18K18151 - 财政年份:2018
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The development of statistical methodology and computational techniques for the modelling of complex ecological data
用于复杂生态数据建模的统计方法和计算技术的发展
- 批准号:
298405-2011 - 财政年份:2018
- 资助金额:
$ 9.79万 - 项目类别:
Discovery Grants Program - Individual
Methodology towards the synthesis of complex stereochemically dense natural products
复杂立体化学致密天然产物的合成方法
- 批准号:
9257835 - 财政年份:2017
- 资助金额:
$ 9.79万 - 项目类别:
Advances of Methodology and Design for the Synthesis of Complex Polycyclic Natural Products
复杂多环天然产物的合成方法与设计进展
- 批准号:
1665356 - 财政年份:2017
- 资助金额:
$ 9.79万 - 项目类别:
Continuing Grant
Innovations in Statistical Methodology for Complex Surveys
复杂调查统计方法的创新
- 批准号:
1733572 - 财政年份:2017
- 资助金额:
$ 9.79万 - 项目类别:
Standard Grant
The development of statistical methodology and computational techniques for the modelling of complex ecological data
用于复杂生态数据建模的统计方法和计算技术的发展
- 批准号:
298405-2011 - 财政年份:2017
- 资助金额:
$ 9.79万 - 项目类别:
Discovery Grants Program - Individual