Multi-Frequency Oscillations and Applications in Communications Systems

多频振荡及其在通信系统中的应用

基本信息

  • 批准号:
    9803581
  • 负责人:
  • 金额:
    $ 8.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

This project concerns the study of multi-frequency oscillations arising in almost periodically forced oscillators and self-excited systems. Main problems to be considered are the nature of complicated dynamics resulting from the interactions of several frequencies especially when these frequencies are close to resonance. By studying issues such as mean motions of toral flows and quasi-periodic bifurcations, the investigator would like to address the important role played by almost automorphic oscillations in these systems. The results of this project will have significant applications to electric circuit designs of crystal oscillators.This project is devoted to the study of mathematical models of physical systems that present multi-phase oscillations (e.g., mechanical devices and electric circuits) or systems that are subjected to seasonal variations (e.g., biological oscillators and population models). Due to the complexity of these physical systems involving large dimension, multi-parameters and many oscillating frequencies, qualitative analysis (with help of numerical computations) will be extremely important to guide practical designs of the physical systems with respect to the prediction of valuable design parameters and the explanation of new oscillatory phenomena etc. In particular, the results of this project will be of a great impact on electric circuit designs of crystal oscillators arising in a large variety of applications of communication systems.
本课题主要研究准周期受迫振子和自激系统中的多频振荡。要考虑的主要问题是由几个频率的相互作用引起的复杂动力学的性质,特别是当这些频率接近共振时。通过研究对流的平均运动和准周期分叉等问题,研究者希望解决几乎自同构的振荡在这些系统中所起的重要作用。本项目致力于研究存在多相振荡的物理系统(如机械设备和电路)或受季节变化影响的系统(如生物振荡器和种群模型)的数学模型。由于这些物理系统的复杂性,涉及大尺寸、多参数、多振荡频率,定性分析(借助数值计算)对于指导物理系统的实际设计,对于预测有价值的设计参数和解释新的振荡现象等将是非常重要的,特别是本项目的结果将对通信系统中的各种应用中出现的晶体振荡器的电路设计产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingfei Yi其他文献

Convergence to Equilibrium in Fokker-Planck Equations
Poincaré–Treshchev Mechanism in Multi-scale, Nearly Integrable Hamiltonian Systems
  • DOI:
    10.1007/s00332-017-9410-5
  • 发表时间:
    2017-08-30
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Lu Xu;Yong Li;Yingfei Yi
  • 通讯作者:
    Yingfei Yi
Nekhoroshev and KAM stabilities in generalized Hamiltonian systems
广义哈密顿系统中的涅霍罗舍夫和 KAM 稳定性
Convergence to Equilibrium in Fokker-Planck Equations
福克-普朗克方程收敛到平衡点
Large deviation principle for quasi-stationary distributions and multiscale dynamics of absorbed singular diffusions
准平稳分布的大偏差原理和吸收奇异扩散的多尺度动力学

Yingfei Yi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingfei Yi', 18)}}的其他基金

First International Conference on Dynamics of Differential Equations
第一届微分方程动力学国际会议
  • 批准号:
    1252362
  • 财政年份:
    2013
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Multi-frequency Oscillations: Regularity, Irregularity, and Complexity
多频振荡:规则性、不规则性和复杂性
  • 批准号:
    1109201
  • 财政年份:
    2011
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Multi-frequency oscillations in biological, electrical, and mechanical systems
生物、电气和机械系统中的多频振荡
  • 批准号:
    0708331
  • 财政年份:
    2007
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Continuing Grant
Pan-American Advanced Studies Institutes (PASI) on Differential Equations and Nonlinear Analysis; Santiago, Chile, January 10 - 21, 2005
泛美高等研究院 (PASI) 微分方程和非线性分析;
  • 批准号:
    0418422
  • 财政年份:
    2004
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Multi-Frequency Oscillations and Related Perturbation Problems
多频振荡及相关扰动问题
  • 批准号:
    0204119
  • 财政年份:
    2002
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Continuing Grant
Dynamical Study of Almost Periodic Systems with Applications
准周期系统的动力学研究及其应用
  • 批准号:
    9501412
  • 财政年份:
    1995
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant

相似国自然基金

转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Beyond theta: analyzing oscillations across the frequency spectrum in patients with dystonia implanted with sensing-enabled pulse generators
超越 theta:分析植入传感脉冲发生器的肌张力障碍患者的整个频谱振荡
  • 批准号:
    10569467
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
Scalp high frequency EEG oscillations as a biomarker to predict epilepsy
头皮高频脑电图振荡作为预测癫痫的生物标志物
  • 批准号:
    462608
  • 财政年份:
    2022
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Operating Grants
Understanding brain maturation: How spontaneous cortical high frequency oscillations develop and affect executive function during childhood
了解大脑成熟:自发皮质高频振荡如何发展并影响儿童时期的执行功能
  • 批准号:
    RGPIN-2021-02948
  • 财政年份:
    2022
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Discovery Grants Program - Individual
Cross-frequency coupling of brain oscillations during human non-rapid-eye-movement (NREM) sleep: implications for cognitive function and memory consolidation.
人类非快速眼动 (NREM) 睡眠期间大脑振荡的交叉频率耦合:对认知功能和记忆巩固的影响。
  • 批准号:
    RGPIN-2019-06990
  • 财政年份:
    2022
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Discovery Grants Program - Individual
Cross-frequency coupling of brain oscillations during human non-rapid-eye-movement (NREM) sleep: implications for cognitive function and memory consolidation.
人类非快速眼动 (NREM) 睡眠期间大脑振荡的交叉频率耦合:对认知功能和记忆巩固的影响。
  • 批准号:
    RGPIN-2019-06990
  • 财政年份:
    2021
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Discovery Grants Program - Individual
Acute Modulation of Stereotyped High Frequency Oscillations with a Closed-Loop Brain Interchange System in Drug Resistant Epilepsy
耐药性癫痫中闭环脑交换系统对刻板高频振荡的急性调节
  • 批准号:
    10290984
  • 财政年份:
    2021
  • 资助金额:
    $ 8.39万
  • 项目类别:
The coupling of spindles and high frequency oscillations during sleep: role in memory and in epilepsy.
睡眠期间纺锤体和高频振荡的耦合:在记忆和癫痫中的作用。
  • 批准号:
    452204
  • 财政年份:
    2021
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Operating Grants
Understanding brain maturation: How spontaneous cortical high frequency oscillations develop and affect executive function during childhood
了解大脑成熟:自发皮质高频振荡如何发展并影响儿童时期的执行功能
  • 批准号:
    RGPIN-2021-02948
  • 财政年份:
    2021
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Discovery Grants Program - Individual
Acute Modulation of Stereotyped High Frequency Oscillations with a Closed-Loop Brain Interchange System in Drug Resistant Epilepsy
耐药性癫痫中闭环脑交换系统对刻板高频振荡的急性调节
  • 批准号:
    10478109
  • 财政年份:
    2021
  • 资助金额:
    $ 8.39万
  • 项目类别:
Prediction of treatment response and course of disease in schizophrenia using EEG high frequency oscillations as a correlate of glutamatergic neurotransmission
使用脑电图高频振荡作为谷氨酸能神经传递的相关性来预测精神分裂症的治疗反应和病程
  • 批准号:
    442515185
  • 财政年份:
    2020
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了