Multi-Frequency Oscillations and Related Perturbation Problems

多频振荡及相关扰动问题

基本信息

  • 批准号:
    0204119
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-15 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

Proposal #0204119PI: Yingfei YiInstitution: Georgia TechTitle: Multi-frequency oscillations and related perturbation problemsABSTRACTThis project concerns the study of multi-frequency oscillations, including quasi-periodic, almost-periodic and almost-automorphic oscillations, in physical systems that are either regularly or singularly perturbed. Quasi-periodic oscillations will be studied mainly for Hamiltonian and generalized Hamiltonian systems originating in fluid mechanics, solid state physics and biology. Almost-periodic and almost-automorphic oscillations will be studied for quasi-periodically forced oscillatory systems and weakly coupled networks of quasi-periodic oscillators. The goal is to better understand the complicated dynamics resulting from the interaction of several frequencies and the intermittency phenomena that occur especially when the frequencies are close to resonance. For singularly perturbed oscillatory systems, the study of multi-frequency oscillations will focus on those of either relaxation or fast type, with particular attention to ecological, bio-medical and communication systems. The results of this project will have significant applications to the analysis, computation and design of certain biological, electrical and mechanical oscillators.This project is concerned with mathematical models of dynamics arising in biological, electrical and mechanical systems that present multi-phase oscillations. Multi-phase oscillations are universal phenomena in physical systems that involve a large number of degrees of freedom, multi-parameters, and many oscillating frequencies. Their study is of great importance for the understanding of complicated phenomena in nature, such as turbulence in fluids, noisy signals in telecommunication, transport of DNA chains, and transmission dynamics of infectious diseases. The results of this project will also have a large impact on practical engineering designs of mechanical and electrical systems and devices, in particular the identification of useful design parameters and the prediction of singular oscillatory behavior.
项目编号:0204119项目负责人:易英飞项目单位:格鲁吉亚项目名称:多频振荡及相关扰动问题摘要本项目主要研究物理系统在规则或奇异扰动下的多频振荡,包括准周期、准周期和准自守振荡。 拟周期振荡将主要研究起源于流体力学、固体物理和生物学的哈密顿和广义哈密顿系统。 拟周期受迫振动系统和弱耦合拟周期振子网络的概周期和概自守振动将被研究。 我们的目标是更好地理解由多个频率的相互作用产生的复杂动力学以及特别是当频率接近共振时发生的间歇现象。 对于奇摄动振荡系统,多频振荡的研究将集中在松弛或快速类型,特别关注生态,生物医学和通信系统。该项目的结果将对某些生物、电和机械振荡器的分析、计算和设计有重要的应用。该项目涉及生物、电和机械系统中出现的多相振荡的动力学数学模型。 多相振荡是物理系统中的普遍现象,涉及大量的自由度,多参数和许多振荡频率。 它们的研究对于理解自然界中的复杂现象非常重要,例如流体中的湍流,电信中的噪声信号,DNA链的运输以及传染病的传播动力学。 该项目的结果也将对机械和电气系统和设备的实际工程设计产生很大影响,特别是有用的设计参数的识别和奇异振荡行为的预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingfei Yi其他文献

Convergence to Equilibrium in Fokker-Planck Equations
Poincaré–Treshchev Mechanism in Multi-scale, Nearly Integrable Hamiltonian Systems
  • DOI:
    10.1007/s00332-017-9410-5
  • 发表时间:
    2017-08-30
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Lu Xu;Yong Li;Yingfei Yi
  • 通讯作者:
    Yingfei Yi
Nekhoroshev and KAM stabilities in generalized Hamiltonian systems
广义哈密顿系统中的涅霍罗舍夫和 KAM 稳定性
Convergence to Equilibrium in Fokker-Planck Equations
福克-普朗克方程收敛到平衡点
Large deviation principle for quasi-stationary distributions and multiscale dynamics of absorbed singular diffusions
准平稳分布的大偏差原理和吸收奇异扩散的多尺度动力学

Yingfei Yi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingfei Yi', 18)}}的其他基金

First International Conference on Dynamics of Differential Equations
第一届微分方程动力学国际会议
  • 批准号:
    1252362
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Multi-frequency Oscillations: Regularity, Irregularity, and Complexity
多频振荡:规则性、不规则性和复杂性
  • 批准号:
    1109201
  • 财政年份:
    2011
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Multi-frequency oscillations in biological, electrical, and mechanical systems
生物、电气和机械系统中的多频振荡
  • 批准号:
    0708331
  • 财政年份:
    2007
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Pan-American Advanced Studies Institutes (PASI) on Differential Equations and Nonlinear Analysis; Santiago, Chile, January 10 - 21, 2005
泛美高等研究院 (PASI) 微分方程和非线性分析;
  • 批准号:
    0418422
  • 财政年份:
    2004
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Multi-Frequency Oscillations and Applications in Communications Systems
多频振荡及其在通信系统中的应用
  • 批准号:
    9803581
  • 财政年份:
    1998
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Dynamical Study of Almost Periodic Systems with Applications
准周期系统的动力学研究及其应用
  • 批准号:
    9501412
  • 财政年份:
    1995
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Beyond theta: analyzing oscillations across the frequency spectrum in patients with dystonia implanted with sensing-enabled pulse generators
超越 theta:分析植入传感脉冲发生器的肌张力障碍患者的整个频谱振荡
  • 批准号:
    10569467
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
Scalp high frequency EEG oscillations as a biomarker to predict epilepsy
头皮高频脑电图振荡作为预测癫痫的生物标志物
  • 批准号:
    462608
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Operating Grants
Understanding brain maturation: How spontaneous cortical high frequency oscillations develop and affect executive function during childhood
了解大脑成熟:自发皮质高频振荡如何发展并影响儿童时期的执行功能
  • 批准号:
    RGPIN-2021-02948
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Cross-frequency coupling of brain oscillations during human non-rapid-eye-movement (NREM) sleep: implications for cognitive function and memory consolidation.
人类非快速眼动 (NREM) 睡眠期间大脑振荡的交叉频率耦合:对认知功能和记忆巩固的影响。
  • 批准号:
    RGPIN-2019-06990
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Cross-frequency coupling of brain oscillations during human non-rapid-eye-movement (NREM) sleep: implications for cognitive function and memory consolidation.
人类非快速眼动 (NREM) 睡眠期间大脑振荡的交叉频率耦合:对认知功能和记忆巩固的影响。
  • 批准号:
    RGPIN-2019-06990
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Acute Modulation of Stereotyped High Frequency Oscillations with a Closed-Loop Brain Interchange System in Drug Resistant Epilepsy
耐药性癫痫中闭环脑交换系统对刻板高频振荡的急性调节
  • 批准号:
    10290984
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
The coupling of spindles and high frequency oscillations during sleep: role in memory and in epilepsy.
睡眠期间纺锤体和高频振荡的耦合:在记忆和癫痫中的作用。
  • 批准号:
    452204
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Operating Grants
Understanding brain maturation: How spontaneous cortical high frequency oscillations develop and affect executive function during childhood
了解大脑成熟:自发皮质高频振荡如何发展并影响儿童时期的执行功能
  • 批准号:
    RGPIN-2021-02948
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Acute Modulation of Stereotyped High Frequency Oscillations with a Closed-Loop Brain Interchange System in Drug Resistant Epilepsy
耐药性癫痫中闭环脑交换系统对刻板高频振荡的急性调节
  • 批准号:
    10478109
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
Prediction of treatment response and course of disease in schizophrenia using EEG high frequency oscillations as a correlate of glutamatergic neurotransmission
使用脑电图高频振荡作为谷氨酸能神经传递的相关性来预测精神分裂症的治疗反应和病程
  • 批准号:
    442515185
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了