Markets with Imperfect Information Transmission
信息传递不完善的市场
基本信息
- 批准号:9810858
- 负责人:
- 金额:$ 13.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-01 至 2001-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When a prospective home buyer discovers a house that appears to him to be flawless but that has been on the market for some time, he is naturally suspicious about the reason it did not sell earlier. (The analysis proposed here can be applied to the sale of a variety of items such as a durable piece of equipment, a business, or a work-of-art. The discussion is set in the context of a housing market merely for concreteness.) There are three possible explanations (two good and one bad). First, he may be the first potential buyer to have discovered the house. Second, the house simply may have been over-priced given the tastes of earlier potential buyers. Third (and most worrisome), earlier potential buyers may have detected a flaw in the house not apparent to him. The weight he ascribes to each of these possibilities depends upon the characteristics of the market such as the overall level of demand, the distribution of buyer tastes, and whether he can observe the history of previously posted prices. Also, the seller of the house may be able to influence a potential buyer's quality assessment through her pricing strategy and disclosure of information. This project studies these issues of imperfect information transmission in a model of two-sided asymmetric information and consumer learning with the following structure. The seller is presumed to know the quality of her house, but posts asking-prices over time without knowing the realization of consumer tastes. Consumers know their own idiosyncratic preferences when making offers, but do not know the quality of the house. The consumer who makes the highest offer commits to buy the house subject to a favorable inspection on quality. In addition, consumers who discover the house on the market late in the selling season use time-on-the-market to update their assessments of quality. Preliminary findings suggest several intriguing phenomena. First, when inspection outcomes are not publicly recorded and consumers observe the history of asking prices, the seller has an incentive to post inordinately high prices early in the selling season in order to ``dampen'' the signal transmitted to prospective buyers who may discover the house for sale late in the season. If a potential buyer who arrives late in the season knows that the seller's initial asking price was relatively high, then he is apt to believe that the house did not sell earlier due to lack of a suitable buyer (i.e., one who liked it enough to pay the high asking price). Conversely, if a potential buyer who arrives late in the season knows that the seller's initial asking price was relatively low, then he is apt to believe that the house did not sell earlier due to detection of low quality. Another way of saying this is that a prospective buyer who walks away from a high-priced house conveys little information concerning quality to subsequent buyers, but a prospective buyer who walks away from a low-priced house transmits a very strong signal regarding his assessment of quality. In the case when inspection outcomes are not publicly recorded and consumers do not observe the history of asking prices, the seller has an incentive to post inordinately low prices early in the selling season in order to make an early sale and thereby avoid the transmission of unfavorable information. The essence of this finding is captured in the often-heard folk wisdom that a seller should beware of setting her initial price too high. The danger from over-pricing in early periods is that a buyer who arrives late and who does not observe the price history will naturally be suspicious about the reason the house did not sell earlier. The cost of correcting the initial over-pricing at this juncture is high as compared with the cost of posting a lower initial price to begin with. Indeed, a seller who posts too high an initial price may be tempted to continue over-pricing in later periods resulting in a vicious circle of rejected offers and falling prices. Ultimately, the seller may be forced to remove her house from the market or to make a sale at a very low price as compared with what she could have secured in early periods. Preliminary findings also suggest theoretical support for laws that require inspection outcomes to be publicly filed and for the use of reputable brokers. Such measures can ease potential buyers' concerns about quality and the concomitant inefficiency. Several extensions to the basic model are also proposed for study. First, it is natural to investigate the impact of inspection costs. It is conjectured that higher inspection costs will generate more inefficiency but that problems involving the transmission of information will be ameliorated to some degree. Second, environments in which the seller of a high-quality home can signal the value of her house by posting a high asking-price are proposed for study. An intriguing possibility here is that the price of a house might actually rise between periods as the seller of a high-quality house switches from a `pooling` to a `separating` phase of the equilibrium. Such anomalous pricing behavior is sometimes observed in real estate and other markets. A final extension of the basic model proposed for study is to consider environments in which the seller has less commitment and bargaining power.
当一个潜在的购房者发现一套在他看来完美无瑕但已经上市一段时间的房子时,他自然会怀疑它没有早些售出的原因。(这里提出的分析可以应用于各种物品的销售,如耐用设备、企业或艺术品。为了具体起见,本文以房地产市场为背景进行讨论。)有三种可能的解释(两种好解释,一种坏解释)。首先,他可能是第一个发现这所房子的潜在买家。其次,考虑到早期潜在买家的口味,这所房子的价格可能过高。第三(也是最令人担忧的),早期的潜在买家可能已经发现了他没有察觉到的房子缺陷。他赋予每一种可能性的权重取决于市场的特征,比如总体需求水平、买家口味的分布,以及他是否能观察到之前公布的价格历史。此外,房屋的卖方可以通过她的定价策略和信息披露来影响潜在买家的质量评估。本项目在一个双边信息不对称和消费者学习的模型中研究这些信息不完全传递问题,模型的结构如下:卖家被认为知道自己房子的质量,但在不了解消费者品味的情况下,长期贴出要价。消费者在出价时知道自己的特殊偏好,但不知道房子的质量。出价最高的消费者承诺在质量检验合格的情况下购买房子。此外,在销售季节后期发现市场上的房子的消费者会利用“待售时间”来更新他们对质量的评估。初步调查结果显示了几个有趣的现象。首先,当检查结果没有公开记录,消费者观察要价的历史时,卖家有动机在销售季节早期发布过高的价格,以“减弱”传递给潜在买家的信号,这些买家可能会在销售季节后期发现房子待售。如果一个晚到的潜在买家知道卖家的初始要价相对较高,那么他很容易认为房子没有提前出售是由于缺乏合适的买家(即一个足够喜欢它并愿意支付高要价的人)。相反,如果一个在旺季晚到的潜在买家知道卖家的初始要价相对较低,那么他就会倾向于认为房子没有提前出售是由于检测到低质量。另一种说法是,一个潜在的买家从高价房子里走出来,给后来的买家传达的关于质量的信息很少,但是一个潜在的买家从低价房子里走出来,传递了一个非常强烈的关于他对质量的评估的信号。在检查结果没有公开记录,消费者也没有观察到要价历史的情况下,卖方有动机在销售季节早期发布过低的价格,以便尽早销售,从而避免不利信息的传递。这一发现的精髓体现在一个经常听到的民间智慧中,即卖家应该注意不要把初始价格定得太高。早期定价过高的危险在于,如果买家来晚了,又没有观察到价格历史,那么他自然会怀疑房子没有早点卖出去的原因。与一开始就公布较低的初始价格相比,此时纠正初始定价过高的成本要高得多。事实上,一个最初报价过高的卖家可能会在以后的时间里继续定价过高,从而导致拒绝报价和价格下跌的恶性循环。最终,卖方可能会被迫将她的房子从市场上撤下,或者以与她在早期可能获得的价格相比非常低的价格出售。初步调查结果还为要求将检查结果公开归档并要求使用信誉良好的经纪人的法律提供了理论支持。这些措施可以缓解潜在买家对质量和随之而来的低效率的担忧。本文还对基本模型进行了扩展,以供研究。首先,调查检验成本的影响是很自然的。据推测,较高的检查费用将产生更多的效率低下,但涉及信息传递的问题将在某种程度上得到改善。其次,建议研究高质量房屋的卖方可以通过高要价来表明其房屋价值的环境。这里有一种有趣的可能性是,随着高质量房屋的卖方从均衡的“汇集”阶段转向“分离”阶段,房屋的价格实际上可能会在不同时期之间上涨。这种反常的定价行为有时会在房地产和其他市场出现。提出研究的基本模型的最后一个扩展是考虑卖方承诺和议价能力较低的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Curtis Taylor其他文献
Memantine and Cholinesterase Inhibitor Use in Alzheimer Disease Trials: Potential for Confounding by Indication (P6.178)
美金刚和胆碱酯酶抑制剂在阿尔茨海默病试验中的使用:因适应症造成混淆的可能性 (P6.178)
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:9.9
- 作者:
B. Huisa;Ronald G. Thomas;Shelia Jin;T. Oltersdorf;Curtis Taylor;H. Feldman - 通讯作者:
H. Feldman
Curtis Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Curtis Taylor', 18)}}的其他基金
Collaborative Research: Monotone Methods in Dynamic Screening Contracts
合作研究:动态筛选合约中的单调方法
- 批准号:
1132187 - 财政年份:2011
- 资助金额:
$ 13.52万 - 项目类别:
Standard Grant
COLLABORATIVE PROPOSAL: Use of Haptics in a Virtual Reality Environment for Learning of Nanotechnology
合作提案:在虚拟现实环境中使用触觉来学习纳米技术
- 批准号:
0935131 - 财政年份:2009
- 资助金额:
$ 13.52万 - 项目类别:
Standard Grant
GOALI: Mechanically Biased Self-Assembly of 2-D and 3-D Quantum Structures Using a Novel Nanostamping Process
GOALI:使用新型纳米冲压工艺进行 2D 和 3D 量子结构的机械偏置自组装
- 批准号:
0600511 - 财政年份:2006
- 资助金额:
$ 13.52万 - 项目类别:
Standard Grant
Privacy and Information Acquisition in Competitive Markets
竞争市场中的隐私和信息获取
- 批准号:
0417737 - 财政年份:2004
- 资助金额:
$ 13.52万 - 项目类别:
Continuing Grant
Consumer Profiles, Consumer Privacy, and the Information Marketplace
消费者概况、消费者隐私和信息市场
- 批准号:
0136817 - 财政年份:2002
- 资助金额:
$ 13.52万 - 项目类别:
Continuing Grant
Markets with Imperfect Information Transmission
信息传递不完善的市场
- 批准号:
0196201 - 财政年份:2000
- 资助金额:
$ 13.52万 - 项目类别:
Continuing Grant
相似海外基金
Sequential Decision Making with Imperfect Information: Machine Learning and Information Theory
不完美信息的顺序决策:机器学习和信息论
- 批准号:
23K17547 - 财政年份:2023
- 资助金额:
$ 13.52万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
RI: Medium: Techniques for Massive-Scale Strategic Reasoning: Imperfect-Information Subgame Solving and Offering Guarantees in Simulation-Based Games
RI:中:大规模战略推理技术:不完美信息子博弈解决并在模拟游戏中提供保证
- 批准号:
2312342 - 财政年份:2023
- 资助金额:
$ 13.52万 - 项目类别:
Standard Grant
Development a general-purpose imperfect information game AI that surpasses humans
开发超越人类的通用不完美信息游戏AI
- 批准号:
22K12339 - 财政年份:2022
- 资助金额:
$ 13.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimal insurance design in the presence of imperfect information
不完善信息下的最优保险设计
- 批准号:
RGPIN-2020-04204 - 财政年份:2022
- 资助金额:
$ 13.52万 - 项目类别:
Discovery Grants Program - Individual
III: Small: Spatial Deep Learning from Imperfect Volunteered Geographic Information
III:小:从不完美的自愿地理信息中进行空间深度学习
- 批准号:
2207072 - 财政年份:2021
- 资助金额:
$ 13.52万 - 项目类别:
Standard Grant
Mathematical modeling with imperfect/incomplete covariate information
具有不完美/不完整协变量信息的数学建模
- 批准号:
563503-2021 - 财政年份:2021
- 资助金额:
$ 13.52万 - 项目类别:
University Undergraduate Student Research Awards
Optimal insurance design in the presence of imperfect information
不完善信息下的最优保险设计
- 批准号:
RGPIN-2020-04204 - 财政年份:2021
- 资助金额:
$ 13.52万 - 项目类别:
Discovery Grants Program - Individual
Behavioral Macroeconomics under Imperfect Information
不完全信息下的行为宏观经济学
- 批准号:
21H04397 - 财政年份:2021
- 资助金额:
$ 13.52万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Differential Model Inference with Imperfect Information
不完全信息的微分模型推理
- 批准号:
2592959 - 财政年份:2021
- 资助金额:
$ 13.52万 - 项目类别:
Studentship
Mathematical modeling with imperfect/incomplete covariate information
具有不完美/不完整协变量信息的数学建模
- 批准号:
563603-2021 - 财政年份:2021
- 资助金额:
$ 13.52万 - 项目类别:
University Undergraduate Student Research Awards