Short Time Heat Content and the Heat Kernel Asymptotics
短时热含量和热核渐进
基本信息
- 批准号:9820904
- 负责人:
- 金额:$ 9.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-15 至 2002-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-9820904Principal Investigator: Peter B. GilkeyGilkey will study time dependent processes which are controlledby the heat equation and the short time asymptotics which arisethereby. The first project involves the heat content asymptotics,moving from the static setting to the setting where the data(metric, internal heat sources, boundary conditions) are timedependent. Previous work always assumed smooth boundaryconditions; in this project the boundary conditions arediscontinuous. The second project involves studying theasymptotics of the short time expansion of the fundamentalsolution of the heat equation. Most previous studies haveinvolved static geometries, but it is natural to study theseasymptotic expansions for time dependent geometries for quitegeneral operators of Laplace type and for quite generalhomogeneous boundary conditions. This investigation will involveexpanding the usual calculus of pseudo differential operators toestablish the existence of the required short time asymptotics aswell as determining how the time dependent variation of themetric and the coupling constants for Neumann boundary conditionsinfluences the short time asymptotics of the heat kernel.There are many physical settings where boundary conditions arediscontinuous. For example, a body floating in ice watersatisfies Dirichlet boundary conditions on the part immersed inthe water and Neumann boundary conditions on the remainder(assuming as a first approximation that there is no heat transferfrom the air to the body); the boundary conditions arediscontinuous along the water/air interface. Understandingadditional boundary contributions coming from the water/airinterface are likely to be of great physical importance, andlinks the differential geometry of the situation to the physicalunderpinnings of the subject. There are also many conditionswhere the geometry is not static; the Universe is expanding tocite one example. Boundary conditions in physical settings mayvary with time; for example, the temperature outside a buildingvaries with the time of day as well as with the season;consequently the associated heat flow is not well modeled by astatic setting. Understanding the heat flow in this setting hasobvious physical applications. The heat equation asymptotics andheat content asymptotics have proven to be of central importancein theoretical physics. For example, these asymptotics play animportant role in the renormalization of field theory in curvedspace and also in string and membrane theory, and they arerelated to zeta function renormalization.
摘要奖:DMS-9820904首席研究员:Peter B.Gilkey Gilkey将研究受热方程控制的依赖时间的过程以及由此产生的短时渐近性。第一个项目涉及热含量的渐近性,从静态设置转移到数据(公制、内部热源、边界条件)是时间相关的设置。以往的工作总是假定边界条件是光滑的,而在本工程中,边界条件是不连续的。第二个项目涉及研究热方程基本解的短时展开的渐近性。以往的研究大多涉及静态几何问题,但对于一般的拉普拉斯算子和相当一般的齐次边界条件,研究含时几何的渐近展开式是很自然的。这项研究将涉及扩展通常的伪微分算子演算,以确定所需的短时渐近性的存在,以及确定Neumann边界条件的度规常数和耦合常数的随时间的变化如何影响热核的短时渐近性。例如,漂浮在冰水中的物体在浸入水中的部分满足Dirichlet边界条件,其余部分满足Neumann边界条件(作为第一近似值,假设空气不向物体传递热量);边界条件在水/空气界面上是不连续的。了解来自水/空气界面的额外边界贡献可能具有非常重要的物理意义,并将情况的微分几何与对象的物理基础联系起来。在许多情况下,几何学也不是静态的;举个例子,宇宙正在膨胀。物理环境中的边界条件可能会随时间而变化;例如,建筑物外的温度随一天中的时间和季节而变化;因此,相关的热流不能很好地用无定常环境来模拟。了解这一环境中的热流具有明显的物理应用。热方程的渐近性和热含量的渐近性已被证明在理论物理中具有中心重要性。例如,这些渐近性在曲线空间中场理论的重正化以及弦和膜理论中起着重要的作用,并且它们与Zeta函数重正化有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Gilkey其他文献
Curvature Properties of Weyl Geometries
- DOI:
10.1007/s00025-011-0111-3 - 发表时间:
2011-04-02 - 期刊:
- 影响因子:1.200
- 作者:
Peter Gilkey;Stana Nikčević;Udo Simon - 通讯作者:
Udo Simon
Jacobi–Jacobi Commuting Models and Manifolds
- DOI:
10.1007/s00022-008-2061-9 - 发表时间:
2009-01-24 - 期刊:
- 影响因子:0.500
- 作者:
Peter Gilkey;Veselin Videv - 通讯作者:
Veselin Videv
Manifolds with commuting Jacobi operators
- DOI:
10.1007/s00022-006-1898-z - 发表时间:
2007-04-01 - 期刊:
- 影响因子:0.500
- 作者:
Miguel Brozos-Vázquez;Peter Gilkey - 通讯作者:
Peter Gilkey
Asymptotics of Laplacians defined by Symmetric Connections
- DOI:
10.1007/bf03323197 - 发表时间:
2013-04-25 - 期刊:
- 影响因子:1.200
- 作者:
Neda Bokan;Peter Gilkey - 通讯作者:
Peter Gilkey
Relating the second and fourth order terms in the asymptotic expansion of the heat equation
- DOI:
10.1007/bf01222927 - 发表时间:
1997-03-01 - 期刊:
- 影响因子:0.500
- 作者:
Neda Bokan;Peter Gilkey;Udo Simon - 通讯作者:
Udo Simon
Peter Gilkey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Gilkey', 18)}}的其他基金
Mathematical Sciences: Spectral Invariants in Topology and Geometry
数学科学:拓扑和几何中的谱不变量
- 批准号:
9403360 - 财政年份:1994
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
Mathematical Sciences: Heat Equation Asymptotics with Pseudo Differential Boundary Conditions
数学科学:具有伪微分边界条件的热方程渐进
- 批准号:
9121437 - 财政年份:1992
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometry of the Laplacian
数学科学:拉普拉斯几何
- 批准号:
8821045 - 财政年份:1989
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
Mathematical Sciences: The Eta Invariant, Equivariant Bordism, and K-theory
数学科学:Eta 不变量、等变 Bordism 和 K 理论
- 批准号:
8614715 - 财政年份:1987
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
Mathematical Sciences: The Eta Invariant, K-Theory and Cobordism Theory
数学科学:Eta 不变量、K 理论和配边理论
- 批准号:
8414528 - 财政年份:1985
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
The Eta Invariant For Elliptic Boundary Problems
椭圆边界问题的 Eta 不变量
- 批准号:
8113338 - 财政年份:1981
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
Travel to Attend: Semester on Partial Differential Equations at the Stefan Banach International Center; Warsaw,Poland; Sept. 11, 1978 Thru December 16, 1978
前往参加:Stefan Banach 国际中心的偏微分方程学期;
- 批准号:
7815520 - 财政年份:1978
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
- 批准号:71671098
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
- 批准号:11504059
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
GOALI: Advancement of Heat-Assisted Magnetic Recording Enabled by Time-Resolved Magneto-Optical Kerr Effect Metrology
GOALI:时间分辨磁光克尔效应计量技术推动热辅助磁记录的进步
- 批准号:
2226579 - 财政年份:2022
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
Adapting wheat to stressful environments: Identifying key transpiration efficiency components reducing day-time water loss and heat stress linked to yield
使小麦适应压力环境:确定关键的蒸腾效率组成部分,减少与产量相关的白天水分流失和热应激
- 批准号:
570351-2021 - 财政年份:2022
- 资助金额:
$ 9.31万 - 项目类别:
Alliance Grants
Adapting wheat to stressful environments: Identifying key transpiration efficiency components reducing day-time water loss and heat stress linked to yield
使小麦适应压力环境:确定关键的蒸腾效率组成部分,减少与产量相关的白天水分流失和热应激
- 批准号:
570351-2021 - 财政年份:2021
- 资助金额:
$ 9.31万 - 项目类别:
Alliance Grants
EAGER: Time-Resolved Measurements and Control of Vortex Breakdown via Heat Addition
EAGER:通过加热进行涡流破坏的时间分辨测量和控制
- 批准号:
2152596 - 财政年份:2021
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
Sophisticated modeling for quenching of a hot surface with a multi-time scale transient heat transfer model
使用多时间尺度瞬态传热模型对热表面淬火进行复杂建模
- 批准号:
20K04314 - 财政年份:2020
- 资助金额:
$ 9.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RAPID: Responding to extreme heat in the time of COVID-19
RAPID:应对 COVID-19 时期的极端高温
- 批准号:
2031217 - 财政年份:2020
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
Effects of combined heat maintenance strategies during half-time on exercise performance and physical responses
中场休息期间综合热量维持策略对运动表现和身体反应的影响
- 批准号:
19K24313 - 财政年份:2019
- 资助金额:
$ 9.31万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Guru Verify: real-time, cloud-based, machine-learning commissioning tools to radically improve performance of heat networks
Guru verify:基于云的实时机器学习调试工具,可从根本上提高热力网络的性能
- 批准号:
104729 - 财政年份:2019
- 资助金额:
$ 9.31万 - 项目类别:
Feasibility Studies
Analogy between heat and flow of drag-reducing surfactant aqueous solution based on relaxation time
基于弛豫时间的减阻表面活性剂水溶液热量与流动的类比
- 批准号:
19K21931 - 财政年份:2019
- 资助金额:
$ 9.31万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Establishment of heat preservation cooking method for health risk reduction to the vulnerable people at the time of disaster
建立保温烹饪方法,降低灾害时弱势群体的健康风险
- 批准号:
19K02365 - 财政年份:2019
- 资助金额:
$ 9.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)