High Dimensional Statistical Problems: Theory and Methods
高维统计问题:理论与方法
基本信息
- 批准号:9870193
- 负责人:
- 金额:$ 27.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-9870193LindsayThe research will be directed toward the broad theme of recovering statistical information about variation of interest in the presence of confounding variation in high dimensions. The initial work involves developing new tools for the methodology of Generalized Estimating Equations (GEE) based on two new ideas: first, the investigator will develop a maximum information approach to the estimation of nuisance correlation parameters in GEE, and second, he will develop a quadratic inference methodology as an alternative to the point estimator/standard error approach. The first enhancement has been found to increase efficiency under covariance misspecification. The second allows one to develop ANOVA like model selection techniques for the estimating equation framework while automatically meeting the maximum information criterion. These new tools will then be used in a wider range of challenging applications involving high dimensional correlated data. An additional theme of the research is the development of more widely consistent nonparametric estimators for situations in which maximum likelihood fails.Modern statistics is faced with an explosion of increasing complex and sophisticated scientific data. One of the key features of such data is that it is high-dimensional. It is also characterized by having high degrees of interdependence between observations. The goal of the research is to enhance our ability to separate the effects of this interdependence from the features of the data that we are most interested in. The initial focus of this research is on a popular method of dealing with longitudinal data, an example of which would be response variables that are measured repeatedly over time on a group of patients. The structure of the interdependence of observations within a patient is then a nuisance feature which we must adapt to if we wish to learn how the response variables are affected by explanatory variables. New methods will be developed that are more efficient and reliable for this setting, and they will then be extended to other problems with correlated structures.
本研究将针对在高维中存在混杂变异的情况下恢复有关感兴趣变异的统计信息这一广泛主题。 初步的工作涉及开发新的工具的方法,广义估计方程(GEE)的基础上两个新的想法:首先,调查员将开发一个最大的信息方法来估计滋扰相关参数GEE,第二,他将开发一个二次推理方法作为替代点估计/标准误差的方法。 第一个增强已被发现,以增加协方差误指定下的效率。 第二个允许一个开发的ANOVA模型选择技术的估计方程框架,同时自动满足最大信息标准。 这些新工具将被用于更广泛的涉及高维相关数据的具有挑战性的应用。 研究的另一个主题是发展更广泛一致的非参数估计的情况下,最大似然fuls.Modern统计面临着日益复杂和精密的科学数据爆炸。 这种数据的一个关键特征是它是高维的。 它的特点还在于观察之间具有高度的相互依赖性。 研究的目标是提高我们将这种相互依赖性的影响与我们最感兴趣的数据特征分开的能力。 本研究的最初重点是处理纵向数据的流行方法,其中一个例子是随时间推移对一组患者重复测量的响应变量。 因此,如果我们想了解解释变量如何影响响应变量,那么病人体内观察结果的相互依赖性结构就是一个令人讨厌的特征。 新的方法将被开发,更有效和可靠的设置,然后他们将被扩展到相关结构的其他问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Lindsay其他文献
Remote controlled magnetically guided pulmonary vein isolation in canines
- DOI:
10.1016/j.hrthm.2005.09.017 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:
- 作者:
Scott Greenberg;Walter Blume;Mitchell Faddis;Jennifer Finney;Andrew Hall;Michael Talcott;Bruce Lindsay - 通讯作者:
Bruce Lindsay
ROLE OF CHA2DS2-VASC SCHEMA IN PREDICTION OF THROMBOEMBOLIC RISK IN PATIENT UNDERGOING TRANSESOPHAGEAL ECHO GUIDED CARDIOVERSION
- DOI:
10.1016/s0735-1097(11)60068-5 - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
Hirad Yarmohammadi;Tristan Klosterman;Gaganpreet Grewal;Jeremiah Depta;Rayan Yousefzai;Bruce Lindsay;Kevin Shrestha;Wilson Tang;Allan L. Klein - 通讯作者:
Allan L. Klein
PROGNOSTIC VALUE OF ECHO-DOPPLER GUIDED AV DELAY OPTIMIZATION FOLLOWING CARDIAC RESYNCHRONIZATION THERAPY
- DOI:
10.1016/s0735-1097(16)31492-9 - 发表时间:
2016-04-05 - 期刊:
- 影响因子:
- 作者:
Srikanth Koneru;Zoran Popovic;Paul Cremer;Patrick Tchou;Bruce Wilkoff;Bruce Lindsay;Brian Griffin;Richard Grimm - 通讯作者:
Richard Grimm
REMOTE MONITORING OF CARDIOVASCULAR IMPLANTABLE ELECTRONIC DEVICES IS TIME- AND WORK-INTENSIVE
- DOI:
10.1016/s0735-1097(12)60648-2 - 发表时间:
2012-03-27 - 期刊:
- 影响因子:
- 作者:
Edmond Cronin;Betty Ching;Niraj Varma;Bruce Lindsay;Bruce Wilkoff - 通讯作者:
Bruce Wilkoff
flowering plants Widespread genome duplications throughout the history of Material Supplemental
开花植物 整个材料补充历史中广泛存在的基因组重复
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Liying Cui;P. K. Wall;J. Leebens;Bruce Lindsay;D. Soltis;J. Doyle;P. Soltis;J. Carlson;K. Arumuganathan;Abdelali Barakat;V. Albert;Hong Ma;C. dePamphilis - 通讯作者:
C. dePamphilis
Bruce Lindsay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Lindsay', 18)}}的其他基金
Collaborative Research: Statistical Methods and Algorithms for Genomic Data
合作研究:基因组数据的统计方法和算法
- 批准号:
0714839 - 财政年份:2007
- 资助金额:
$ 27.83万 - 项目类别:
Continuing Grant
Statistical Distances, Estimating Functions, and Mixture Models
统计距离、估计函数和混合模型
- 批准号:
0104443 - 财政年份:2001
- 资助金额:
$ 27.83万 - 项目类别:
Continuing Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
0079656 - 财政年份:2000
- 资助金额:
$ 27.83万 - 项目类别:
Standard Grant
Mathematical Sciences: Parametric and Nonparametric Likelihood Studies
数学科学:参数和非参数似然研究
- 批准号:
9403847 - 财政年份:1994
- 资助金额:
$ 27.83万 - 项目类别:
Continuing Grant
Statistical Models for Categorical Dependent Variables in Social Research
社会研究中分类因变量的统计模型
- 批准号:
9310101 - 财政年份:1993
- 资助金额:
$ 27.83万 - 项目类别:
Continuing Grant
Mathematical Sciences: Likelihood, Minimum Distance, and Mixtures of Distributions
数学科学:似然、最小距离和混合分布
- 批准号:
9106895 - 财政年份:1991
- 资助金额:
$ 27.83万 - 项目类别:
Continuing Grant
Mathematical Sciences: Likelihood Type Methods in Parametricand Nonparametric Models
数学科学:参数和非参数模型中的似然类型方法
- 批准号:
8801514 - 财政年份:1988
- 资助金额:
$ 27.83万 - 项目类别:
Continuing Grant
Mathematical Sciences: Likelihood-Based Methods in Semiparametric Models
数学科学:半参数模型中基于似然的方法
- 批准号:
8402735 - 财政年份:1984
- 资助金额:
$ 27.83万 - 项目类别:
Standard Grant
Maximum Likelihood Estimation in Densities With Unknown Mixing Distributions
未知混合分布密度的最大似然估计
- 批准号:
8003081 - 财政年份:1980
- 资助金额:
$ 27.83万 - 项目类别:
Standard Grant
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 27.83万 - 项目类别:
Research Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
- 批准号:
2347177 - 财政年份:2024
- 资助金额:
$ 27.83万 - 项目类别:
Standard Grant
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 27.83万 - 项目类别:
Standard Grant
Statistical Problems Through a New Perturbation Theory
通过新的微扰理论解决统计问题
- 批准号:
2311252 - 财政年份:2023
- 资助金额:
$ 27.83万 - 项目类别:
Standard Grant
Problems in Extremal Combinatorics with Applications to Statistical Physics
极值组合问题及其在统计物理中的应用
- 批准号:
574977-2022 - 财政年份:2022
- 资助金额:
$ 27.83万 - 项目类别:
University Undergraduate Student Research Awards
Novel statistical methods for biased sampling problems
针对有偏抽样问题的新颖统计方法
- 批准号:
RGPIN-2020-04964 - 财政年份:2022
- 资助金额:
$ 27.83万 - 项目类别:
Discovery Grants Program - Individual
Computational and Statistical Approaches to Regression Problems in the Presence of Linkage Errors
存在联动误差时回归问题的计算和统计方法
- 批准号:
2120318 - 财政年份:2021
- 资助金额:
$ 27.83万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Self-Organizing Particle Systems
合作研究:AF:中:计算机科学、统计物理和自组织粒子系统问题的马尔可夫链算法
- 批准号:
2106917 - 财政年份:2021
- 资助金额:
$ 27.83万 - 项目类别:
Continuing Grant
Learning Algorithms for Inverse Problems from Data: Statistical and Computational Foundations
从数据中学习反问题的算法:统计和计算基础
- 批准号:
2113724 - 财政年份:2021
- 资助金额:
$ 27.83万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Self-Organizing Particle Systems
合作研究:AF:中:计算机科学、统计物理和自组织粒子系统问题的马尔可夫链算法
- 批准号:
2106687 - 财政年份:2021
- 资助金额:
$ 27.83万 - 项目类别:
Continuing Grant