High Dimensional Mixture Models
高维混合模型
基本信息
- 批准号:0405637
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is the development of theory, statistical methodology, and computationalmethods for use in mixture models in high dimensional data. In the theoretical portion, the investigatorenhances the potential statistical applications of these models by examining their topographical structure and their relationship to other high-dimensional methods such as local linear regression andhierarchical trees. New kernel densities are being constructed by the use of the idea ofdiffusion processes. New methods to assess the important aspects of identifiability in these modelsare under development. In addition to these basic theoretical developments, the investigator is creating a set of methods designed to fit diffusion mixture models, and to assess their fit, in high dimensions. A key part of this methodological development is occuring in computational enhancements.The statistics community is faced with a great challenge by modern science, and that is todevelop new tools for scientific inference in the aftermath of the data revolution. Modern data is potentially high in dimension, and massive in the number of collected units. The probability models called mixture models have had a long history of use in describing heterogeneity in data samples. They are extremely flexible, and provide a compact picture of the key features of the data structure. Unfortunately, limited theoretical developments in this difficult area have held back their use in high dimensional problems. This research project targets a number of the key difficulties remaining in this area, including the integration of this methodology with other existing ones, the expansionof this methodology into new data types, and a better understanding of this model's structure invery high dimensions. The methods that arise from these developments are being turned into computational packages so that they can be used by scientists.
本项目的目的是发展高维数据混合模型的理论、统计方法和计算方法。在理论部分,通过研究这些模型的地形结构及其与其他高维方法(如局部线性回归和层次树)的关系,研究增强了这些模型的潜在统计应用。利用扩散过程的思想,正在构造新的核密度。评估这些模型中可识别性的重要方面的新方法正在开发中。除了这些基本的理论发展,研究者正在创建一套方法来拟合扩散混合模型,并在高维上评估它们的拟合。这种方法发展的一个关键部分是在计算增强方面。统计学界面临着现代科学的巨大挑战,那就是在数据革命之后开发新的科学推理工具。现代数据具有潜在的高维度,并且收集的单位数量庞大。被称为混合模型的概率模型在描述数据样本的异质性方面有着悠久的历史。它们非常灵活,并提供了数据结构关键特性的简洁图像。不幸的是,这一困难领域的有限理论发展阻碍了它们在高维问题中的应用。该研究项目针对该领域仍然存在的一些关键困难,包括将该方法与其他现有方法集成,将该方法扩展到新的数据类型,以及更好地理解该模型的高维结构。从这些发展中产生的方法正在被转化为计算包,以便科学家使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Lindsay其他文献
Remote controlled magnetically guided pulmonary vein isolation in canines
- DOI:
10.1016/j.hrthm.2005.09.017 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:
- 作者:
Scott Greenberg;Walter Blume;Mitchell Faddis;Jennifer Finney;Andrew Hall;Michael Talcott;Bruce Lindsay - 通讯作者:
Bruce Lindsay
ROLE OF CHA2DS2-VASC SCHEMA IN PREDICTION OF THROMBOEMBOLIC RISK IN PATIENT UNDERGOING TRANSESOPHAGEAL ECHO GUIDED CARDIOVERSION
- DOI:
10.1016/s0735-1097(11)60068-5 - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
Hirad Yarmohammadi;Tristan Klosterman;Gaganpreet Grewal;Jeremiah Depta;Rayan Yousefzai;Bruce Lindsay;Kevin Shrestha;Wilson Tang;Allan L. Klein - 通讯作者:
Allan L. Klein
PROGNOSTIC VALUE OF ECHO-DOPPLER GUIDED AV DELAY OPTIMIZATION FOLLOWING CARDIAC RESYNCHRONIZATION THERAPY
- DOI:
10.1016/s0735-1097(16)31492-9 - 发表时间:
2016-04-05 - 期刊:
- 影响因子:
- 作者:
Srikanth Koneru;Zoran Popovic;Paul Cremer;Patrick Tchou;Bruce Wilkoff;Bruce Lindsay;Brian Griffin;Richard Grimm - 通讯作者:
Richard Grimm
REMOTE MONITORING OF CARDIOVASCULAR IMPLANTABLE ELECTRONIC DEVICES IS TIME- AND WORK-INTENSIVE
- DOI:
10.1016/s0735-1097(12)60648-2 - 发表时间:
2012-03-27 - 期刊:
- 影响因子:
- 作者:
Edmond Cronin;Betty Ching;Niraj Varma;Bruce Lindsay;Bruce Wilkoff - 通讯作者:
Bruce Wilkoff
flowering plants Widespread genome duplications throughout the history of Material Supplemental
开花植物 整个材料补充历史中广泛存在的基因组重复
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Liying Cui;P. K. Wall;J. Leebens;Bruce Lindsay;D. Soltis;J. Doyle;P. Soltis;J. Carlson;K. Arumuganathan;Abdelali Barakat;V. Albert;Hong Ma;C. dePamphilis - 通讯作者:
C. dePamphilis
Bruce Lindsay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Lindsay', 18)}}的其他基金
Collaborative Research: Statistical Methods and Algorithms for Genomic Data
合作研究:基因组数据的统计方法和算法
- 批准号:
0714839 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Statistical Distances, Estimating Functions, and Mixture Models
统计距离、估计函数和混合模型
- 批准号:
0104443 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
0079656 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
High Dimensional Statistical Problems: Theory and Methods
高维统计问题:理论与方法
- 批准号:
9870193 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Parametric and Nonparametric Likelihood Studies
数学科学:参数和非参数似然研究
- 批准号:
9403847 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing Grant
Statistical Models for Categorical Dependent Variables in Social Research
社会研究中分类因变量的统计模型
- 批准号:
9310101 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Likelihood, Minimum Distance, and Mixtures of Distributions
数学科学:似然、最小距离和混合分布
- 批准号:
9106895 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Likelihood Type Methods in Parametricand Nonparametric Models
数学科学:参数和非参数模型中的似然类型方法
- 批准号:
8801514 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Likelihood-Based Methods in Semiparametric Models
数学科学:半参数模型中基于似然的方法
- 批准号:
8402735 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Standard Grant
Maximum Likelihood Estimation in Densities With Unknown Mixing Distributions
未知混合分布密度的最大似然估计
- 批准号:
8003081 - 财政年份:1980
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Fusion Pursuit for Pattern-Mixture Models with Application to Longitudinal Studies with Nonignorable Missing Data
模式混合模型的融合追踪及其在不可忽略缺失数据纵向研究中的应用
- 批准号:
2310217 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Design-Based Optimal Subdata Selection Using Mixture-of-Experts Models to Account for Big Data Heterogeneity
协作研究:基于设计的最佳子数据选择,使用专家混合模型来解释大数据异构性
- 批准号:
2210576 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
- 批准号:
10340087 - 财政年份:2022
- 资助金额:
-- - 项目类别:
RUI: A Family of Versatile Mixture Models for Analyzing Mixed-Type Data with Asymmetry, Outliers, and Missing Values
RUI:一系列多功能混合模型,用于分析具有不对称性、离群值和缺失值的混合类型数据
- 批准号:
2209974 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Likelihood-based Tests for the Number of Components/Regimes in Finite Mixture and Markov Regime Switching Models
有限混合和马尔可夫政权切换模型中组件/政权数量的基于似然的检验
- 批准号:
RGPIN-2019-04047 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Semi-parametric mixture models: algorithms, prediction, fit assessment, model comparison
半参数混合模型:算法、预测、拟合评估、模型比较
- 批准号:
RGPIN-2020-07079 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Design-Based Optimal Subdata Selection Using Mixture-of-Experts Models to Account for Big Data Heterogeneity
协作研究:基于设计的最佳子数据选择,使用专家混合模型来解释大数据异构性
- 批准号:
2210546 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
- 批准号:
10544523 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Developments and challenges in mixture models
混合模型的发展和挑战
- 批准号:
RGPIN-2018-05846 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Statistical methodology for rank based sampling design and finite mixture models
基于等级的抽样设计和有限混合模型的统计方法
- 批准号:
RGPIN-2020-06696 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual