Problems in Regularity Theory for Nonlinear Partial Differential Equations

非线性偏微分方程正则理论中的问题

基本信息

  • 批准号:
    9877055
  • 负责人:
  • 金额:
    $ 27.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-06-01 至 2003-05-31
  • 项目状态:
    已结题

项目摘要

The proposal is aimed at the study of regularity properties of solutionsof various systems of nonlinear partial differential equations. These include:(i) Quasilinear elliptic systems arising as Euler-Lagrange equationsof general multiple integrals in the Calculus of Variations and hyperbolic systems of conservation laws. Questions arising in the study ofregularity of solutions of these equations will be studied from the pointof view of the theory of Compensated Compactness, which provides a unifyingplatform for approaching these seemingly diverse problems. We expect that new methods in Compensated Compactness recently developedby Stefan Muller and the PI will enable us to give answers to some relativelyold open questions.(ii) The Navier-Stokes equations. Here we plan to study both the interiorand boundary regularity for important special classes of solutions.The motivation for these investigation is the following: since regularityquestions for general solutions are notoriously intractable, it will be usefulto study some non-trivial special cases. Hopefully this will provide insights for the general case.We also plan to study the relationship between Morrey's quasiconvexityand local ellipticity conditions for functions on two by two matrices.This problem has recently been linked to some old and difficult conjecturesin Harmonic Analysis and the theory of quasi-conformal mappings, and we expectthat the interaction of ideas from these different areas will be fruitful.The main aim of this proposal is the study of regularity properties ofsolution of nonlinear partial differential equations. Such equationsappear in many models of the real-world processes. The task ofmathematicians is to solve these equations. Often thisis done by a numerical simulation on a computer. To be able to dosuch simulations in a reliable way, one must know something aboutthe qualitative behavior of the solutions. For example, if we expect thatthe solutions will oscillate wildly over small distances, we might needa different method than in the case when the solutions change onlyslowly. Roughly speaking, one of the main task of regularitytheory is to develop methods which would enable us to reliablypredict the behavior of the solutions, so that we can then chooseadequately the methods for solving the equations. The proposed research will hopefully improve our understandingof these difficult and important questions.
该建议旨在研究各种非线性偏微分方程组解的正则性。这些包括:(i)拟线性椭圆方程组产生的Euler-Lagrange方程的一般多重积分的变分法和双曲系统的守恒律。在研究这些方程的解的正则性时所出现的问题将从补偿紧性理论的角度来研究,它为处理这些看似不同的问题提供了一个统一的平台。我们期望最近由Stefan Muller和PI发展的补偿紧性的新方法将使我们能够回答一些相对古老的开放问题。(ii)纳维-斯托克斯方程。在这里,我们计划研究重要的特殊类解的边界正则性和边界正则性,这些研究的动机如下:由于一般解的正则性问题是出了名的棘手,研究一些非平凡的特殊情况将是有用的。我们还计划研究Morrey拟凸性条件和2 × 2矩阵上函数的局部椭圆性条件之间的关系,这个问题最近与调和分析和拟共形映射理论中的一些古老而困难的问题联系在一起,我们期望这些不同领域的思想的相互作用将是富有成效的。本建议的主要目的是研究非线性偏微分方程解的正则性。这样的方程出现在现实世界过程的许多模型中。数学家的任务就是解这些方程。这通常是通过计算机上的数值模拟来完成的。为了能够以可靠的方式进行这样的模拟,人们必须了解解的定性行为。例如,如果我们期望解在小距离上会剧烈振荡,我们可能需要一种与解仅发生微小变化时不同的方法。粗略地说,正则性理论的主要任务之一是发展一些方法,使我们能够可靠地预测解的行为,这样我们就可以充分地研究求解方程的方法。这项研究将有望提高我们对这些困难和重要问题的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladimir Sverak其他文献

Vladimir Sverak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladimir Sverak', 18)}}的其他基金

Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
  • 批准号:
    1956092
  • 财政年份:
    2020
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
The Twentieth Riviere-Fabes Symposium
第二十届Riviere-Fabes研讨会
  • 批准号:
    1665006
  • 财政年份:
    2017
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
Questions in Nonlinear Partial Differential Equations
非线性偏微分方程问题
  • 批准号:
    1664297
  • 财政年份:
    2017
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Continuing Grant
Aspects of well-possedeness and long time behavior for non-linear PDEs
非线性偏微分方程的完备性和长时间行为
  • 批准号:
    1362467
  • 财政年份:
    2014
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Continuing Grant
The Sixteenth Riviere-Fabes Symposium
第十六届Riviere-Fabes研讨会
  • 批准号:
    1304998
  • 财政年份:
    2013
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
  • 批准号:
    1159376
  • 财政年份:
    2012
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
Aspects of regularity theory for PDE
PDE 正则性理论的各个方面
  • 批准号:
    1101428
  • 财政年份:
    2011
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Continuing Grant
Riviere-Fabes Symposium
里维埃-法贝斯研讨会
  • 批准号:
    1004156
  • 财政年份:
    2010
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
Problems in Nonlinear Partial Differential Equations
非线性偏微分方程问题
  • 批准号:
    0800908
  • 财政年份:
    2008
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Continuing Grant

相似海外基金

Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
Regularity theory for elliptic and parabolic free boundary problems
椭圆和抛物线自由边界问题的正则理论
  • 批准号:
    417627993
  • 财政年份:
    2019
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Research Grants
Regularity of Evolutionary Problems via Harmonic Analysis and Operator Theory
通过调和分析和算子理论研究演化问题的规律性
  • 批准号:
    263969954
  • 财政年份:
    2014
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Research Grants
New developements of the regularity theory on the solutions to the Liouville-Gelfand type problems and the related parabolic dynamics
求解Liouville-Gelfand型问题及相关抛物动力学的正则理论的新进展
  • 批准号:
    24654043
  • 财政年份:
    2012
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
CAREER: Problems in regularity theory for linear and nonlinear partial differential equations
职业:线性和非线性偏微分方程的正则理论问题
  • 批准号:
    1056737
  • 财政年份:
    2011
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Continuing Grant
Geometric Measure Theory and Free Boundary Regularity Problems
几何测度论与自由边界正则问题
  • 批准号:
    0244834
  • 财政年份:
    2003
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
Relaxation and Regularity Theory in the Calculus of Variations: Applications to Multiscale Problems, Thin Structures, and Magnetic Materials
变分微积分中的松弛和正则理论:在多尺度问题、薄结构和磁性材料中的应用
  • 批准号:
    0103799
  • 财政年份:
    2001
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Regularity Problems in Nonlinear Potential Theory and Quasiregular Mappings
数学科学:非线性势论和拟正则映射中的正则问题
  • 批准号:
    9208296
  • 财政年份:
    1992
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topics On Regularity Theory and Free Boundary Problems
数学科学:正则性理论和自由边界问题专题
  • 批准号:
    8802883
  • 财政年份:
    1988
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Regularity Theory for Certain Nonlinear Elliptic Equations and Related Variational Problems Involving Derivatives of Rearrangement of Solutions
数学科学:某些非线性椭圆方程和涉及解重排导数的相关变分问题的正则理论
  • 批准号:
    8702532
  • 财政年份:
    1987
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了